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Using solution-phase free energy 
calculations to improve 
binding free energies



We’ve been using a progression of model 
binding sites to test and improve these methods

• Simple
• Nonpolar
• Dry

Others have found them attractive test systems for
method development studies.31–34 An important
advantage of these cavity sites is that they are expe-
rimentally tractable for detailed, prospective testing
of ligand predictions. Because the ligands they bind
are small—in the 70- to 150-amu range—many
possible ligands are readily available commercially,

which is rarely true of drug targets.35 The binding of
these predicted ligands may be tested by direct
binding assays, and the structures of the ligand–
protein complexes may be routinely determined by
X-ray crystallography to resolutions better than 2 Å.
Extensive study in the Matthews, Goodin, and our
own laboratories has resulted in many tens of
diverse ligands for each cavity, as well as tens of
“decoys,” which are molecules that were predicted
to bind to the sites but for which no binding was
observed at concentrations as high as 10 mM on ex-
perimental testing.21,23,28–30
We thus used these three simplemodel cavity sites,

L99A, L99A/M102Q, and W191G, as templates to
measure the strengths and weaknesses of MM–
GBSA rescoring of docking hit lists. We used two
rescoring programs: Protein Local Optimization
Program (PLOP),36,37 with binding-site side-chain
rotamer search and minimization, and AMBER-
DOCK, using short molecular dynamics (MD) steps
andminimization of binding-site residues (Materials
and Methods). Molecular docking was used to
screen compound libraries that contained between
5000 and 60,231 fragment-like molecules from the
Available Chemicals Directory (ACD); the library
size was chosen to partly mitigate issues of size and
charge bias from the library alone and to be
consistent with earlier studies in these sites (Re-
sults).28,29 The single best pose for each compound
that ranked among the top 5000 or 10,000 com-
pounds by docking was then rescored by both MM–
GBSA programs. Multiple known ligands and
decoys were among the molecules rescored for all
three sites' rescored sets. In retrospective calcu-
lations, MM–GBSA rescoring improved the sepa-
ration of ligands from decoys in each of the cavities.
We then tested 33 new ligands that were predicted
to bind by the MM–GBSA methods that docking
alone ranked poorly, generally much worse than
the top 500. To investigate the detailed basis of
the MM–GBSA predictions, we determined crystal
structures for 21 of these new ligands and com-
pared them to the geometries predicted by theory.
These studies suggest areas where MM–GBSA me-
thods can contribute to the success of virtual screen-
ing and areas where this method faces important
challenges.

Results

Retrospective docking and rescoring in the
hydrophobic cavity

Approximately 60,000 small molecules were
docked into the hydrophobic cavity L99A using
DOCK3.5.5423,38 (Fig. 1a). The compounds in this set
were selected from a much larger library so as not to
exceed 25 non-hydrogen atoms, as previously de-
scribed.29 This reduced the enrichment-factor bias
that would have otherwise occurred by the trivial
ability of the docking program to remove com-

Fig. 1. The model cavity sites. (a) Cavity binding site in
T4 lysozyme L99A with benzene bound. (b) Cavity
binding site in T4 lysozyme L99A/M102Q with phenol
bound; the hydrogen bond with the Oε2 oxygen of Gln102
is represented by a dashed line. (c) Cavity binding site of
cytochrome c peroxidase W191G with aniline bound; the
hydrogen bond with Asp235 is represented by a dashed
line. The heme and an ordered water molecule are also
depicted. In (a), (b), and (c), the cavities are represented by
a tan molecular surface and the protein ribbons are green.
Rendered with the program PyMOL.26

916 Rescoring Docking Hit Lists

Lysozyme L99A Lysozyme L99A/M102Q Cytochr. C Peroxidase

• Simple
• Polar
• Dry
• Additional stable 

binding modes

• Simple (?)
• Polar, Charged
• Wet
• Additional stable 

binding modes
• Force field issues?



In the lysozyme sites, we typically end up with 
~1.5 kcal/mol RMS errors and substantial 

predictive power



Hydration: It’s what we do every day*

* - Every SAMPL

• Two subsets: Blind and supplementary
• Most people did all of both
• Started with 52 compounds
• Post-SAMPL, cut to 49 due to human 

error



For SAMPL4, we ran a bunch of different metrics...



For SAMPL4, we ran a bunch of different metrics...

Leaders so far:
- 145
- 005
- 566
- 565
...



What are these methods?

• 145: QM + implicit solvent + funct. group corrections
• Lars Sandberg, University of Dundee
• Conformational search with Schrödinger tools, then geometry optimization 

(QM, implicit solvent)
• Separate polarization, electrostatic, dispersion, repulsion, cavity formation 

components
• Empirical functional group corrections for charge transfer to water

• 005: Explicit solvent alchemical MD
• Mobley lab (Karisa Wymer)
• Standard approach, new hydroxyl parameters (with Chris Fennell)

• 566: PB single conformer
• Matt Geballe, OpenEye
• Omega, then gas phase minimization; pick low energy conformation
• AM1-BCC charges (symmetrized), ZAP (ZAP9 radii)
• Like SAMPL2 (Nicholls et al. JCAMD 6:293)



Several disparate methods did comparably well
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AM1-BCC GAFF (Gilson and Mobley labs)

544

004

Good news: Methods which are the same agree



Sometimes, doing predictions highlights issues 
we hadn’t noticed before



Sometimes, doing predictions highlights issues 
we hadn’t noticed before

Hydroxyl-rich compounds off by roughly 
the same amount per hydroxyl in the same 
direction
Some sampling problems, but these don’t 
seem to be the problem



Focusing in on hydroxyls in our large set, there 
was a systematic error



Idea: Re-fit parameters for hydroxyls based on 
neat liquid properties?

• Start with some initial force field and optimize parameters 
automatically to reproduce measured properties

• Density, heat of vaporization, dielectric constant

• As a starting point, we took methanol, ethanol, butanol, and 
propanol, and optimized beginning from OPLS and GAFF

• Hydroxyl parameters end up in a similar place regardless of 
starting FF and across molecules



We don’t want to do new neat liquid simulations 
for each new molecule, so we use the methanol 

hydroxyl parameters for a large set

Original New

q=0.396

q=-0.5988

σ=3.06647 Å
ε=0.880314 kJ/mol 

q=-0.72398

q=0.47878

σ=3.2199 Å
ε=0.845476 kJ/mol 

In practice, this is a new σ and ε, plus a 
hydroxyl charge scaling factor of 1.20905



The new parameters dramatically improved 
performance on a large test set

RMSE 1.52 
MSE 1.43 

RMSE: 0.68
MSE -0.5

(units kcal/mol)



Dielectric-corrected GAFF does dramatically 
better at dielectric constants as well

Fennell, Wymer and Mobley, JPCB 2014 (DOI 10.1021/jp411529h)



For the SAMPL4 hydroxyl-containing 
compounds, there is statistically significant 

improvement, though modest

RMSE: 1.8(4); 
MSE 0.8(4); 
AUE 1.4(3)

RMSE: 1.5(3); 
MSE -0.1(4); 
AUE 1.2(2)



This was one of the top methods at SAMPL4



This was one of the top methods at SAMPL4

Leaders so far:
- 145
- 005
- 566
- 565
...



Hydration free energies have been helpful for a 
variety of purposes, so we updated our “504 

molecule set” 
• 643 molecules
• Expt. & calc. values 

(GAFF)
• Structures, parameters, 

input files
• Literature citations
• (Curation ongoing)
• FreeSolv
• Permanent cite-able URL,
• http://

www.escholarship.org/uc/
item/6sd403pz

http://www.escholarship.org/uc/item/6sd403pz
http://www.escholarship.org/uc/item/6sd403pz
http://www.escholarship.org/uc/item/6sd403pz
http://www.escholarship.org/uc/item/6sd403pz
http://www.escholarship.org/uc/item/6sd403pz
http://www.escholarship.org/uc/item/6sd403pz


From the standpoint of testing force fields for drug-
like molecules, though, we have a ways to go

Largest MW 4-nitroaniline: Largest dipole

Octafluorocyclobutane
Most hydrophobic

Most negative
 experimental value
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Various functional groups are underrepresented or 
not represented compared to drugsDrugBank

FreeSolv



Various functional groups are underrepresented or 
not represented compared to drugsDrugBank

FreeSolv



Certain functional groups appear to still be 
particularly problematic



Reminder: We can look at functional groups which 
are overrepresented at high error

of two distributions and provides a measure of the signifi-
cance of any difference in the means. We applied this
approach in two different ways:

(1) We compared the mean experimental value for each
functional group with the mean calculated value for each
functional group (Supporting Information, Table 5). This
proved not to be particularly useful, as these means are
significantly different for almost every functional group. This
is not surprising given the fact that the mean error across
the entire test set is 0.676 ( 0.002, so most computed values
(in all functional groups) are too positive. This does show
that results could be improved across the entire set by
addressing this systematic offset, but it does not provide any
insight into which functional groups are particularly
problematic.

(2) We compared the error for the compounds in each
functional group with the error for the entire set (Table 2).
This shows which functional groups have a significantly
different performance than the overall set, though this
performance could be better or worse. We also show the
mean error for each functional group in Table 2; functional
groups with mean errors around 0.676 kcal/mol are typical,
while those with larger mean errors are worse than average,
and those with smaller mean errors are better than average.
The t-test tells us which of these differences are significant,
and many are. This appears to be a useful analysis that
complements the BEDROC analysis. The advantage of the
BEDROC analysis is that it tells us which functional groups
have the worst errors, while this analysis can tell us which
functional groups have the most significant errors.

Figure 2. CDFs for selected functional groups versus error. Shown are cumulative distribution functions for finding compounds
with particular functional groups at a given ranked error. Compounds found far to the left have very large errors; compounds far
to the right have very small errors. An ideal random distribution of errors would give rise to a linear rise in the CDF. CDFs are
shown for (a) alkynes before fixing the Lennard-Jones well-depth, (b) alkynes after fixing the Lennard-Jones well-depth, and (c)
aromatics.
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While hydration free energies have been extremely 
useful, we are simply running out

• Probably ~3000 in total
• Not commonly measured
• Not enough coverage of 

drug-like molecules
• What if we we get hydration 

right at the expense of other 
properties?
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Mean 3.44, σ 1.54
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Some efforts are taking solubility 
prediction in more physical directions

Schnieders et al., JCTC 8:1721-1736 (2012)



27

Sublimation is calculated via alchemical 
techniques, as is solvation

Schnieders et al., JCTC 8:1721-1736 (2012)
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Results on an initial series appear 
promising without any empirical tuning

Schnieders et al., JCTC 
8:1721-1736 (2012)



29

We took a different angle: What if we 
want to avoid the solid phase?



29

We took a different angle: What if we 
want to avoid the solid phase?

Additional plus: Not biased by water



30

At infinite dilution, a relative solubility 
calculation is two solvation free energy 

calculations
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Small problem: There is some 
arbitrariness in how we analyze

trans-stilbene 2,2,4-trimethylpentane vs tert-
butylcyclohexane

benzene vs tetrahydrofuran

benzene vs 2,2,4-trimethylpentane
expt. 2.58; calc. 2.5(2) 

expt. -0.6; calc. -0.2(2)

expt. -0.6; calc. -1.2(2)
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Here, we remove the arbitrariness by 
considering all possible pairs

(8 solutes, 29 solvents, 55 combinations)
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On the whole calculated and 
experimental values agree rather well

Calculated relative ln(S)
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For comparison, SMD is a QM-based 
solvation model with empirical solvation 

parameters

Calculated relative ln(S)
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UNIFAC does somewhat better but does 
not cover the whole set

Calculated relative ln(S)
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GAFF-DC error in relative 
ln(S), all pairs
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Another way of looking at this is a parity 
plot of errors, GAFF vs SMD
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GAFF-DC error in relative ln(S), all pairs

Another way of looking at this is a parity 
plot of errors, GAFF vs UNIFAC
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Conclusions

We have new GAFF-DC 
hydroxyl parameters

The FreeSolv database 
is available, but we 

need more

Relative solubility 
calculations look like an 
exciting source of data
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We built LOMAP for automated planning of relative 
free energy calculations
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Called Lead Optimization Mapper (LOMAP); available 
under BSD

Schrödinger/Maestro interface and pipeline



There's just one problem: What if we 
don't know the binding mode? 



There's just one problem: What if we 
don't know the binding mode? 



Additional information is needed:
 the relative free energies or populations of the 

different potential binding modes



Does this ever happen in real life? Yes! Examples 
are easy to come by, but we don’t really know how 

often
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Stout et al., Biochem. 38:1607 (1999)
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We do have to 
worry about binding 

mode changes



What error distribution should we see from a 
predictive method? 



What error distribution should we see from a 
predictive method? Not Gaussian...



Why not? 
We may not have the right system



Why not? 
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Why not? 
We may not have the right system



So, what should we have then? 
Something non-Gaussian at least



There is another complexity -- which compounds 
will they make when you make predictions?



So, in the end, our reasonable 
method looks pretty dismal



Major take-away: “Application is not validation”

Apparent performance in application may be 
substantially different from true average 

performance due to selection bias/issues



The SAMPL4 challenge included an HIV-1 
integrase virtual screening challenge

Enrichment factor by 
submission number
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What must be done for these to become a routine 
part of lead optimization?

• Can probably be used now/soon when system is “well 
behaved” (but how do you know?)

• But in general:
• Better sidechain sampling
• Handling of missing residues/loops
• Ligand binding mode sampling
• Slow protein conformational changes

• Failure prediction, especially:
• Sampling failure
• Force field failure

• Need to validate, not just apply...
• Need follow-up calcs AND experiments when calculation, experiment disagree


