Towards best practices in calculating protein-ligand binding free energies

Michael R. Shirts
Department of Chemical Engineering
University of Virginia

2014 Workshop on Free Energy Methods in Drug Design May 21, 2014

Computational modeling and design is central to engineering

Why can't we design drugs on a computer?

What is preventing free energy calculations from being more powerful and useful in drug design?

- Claim: not <u>primarily</u> lack of computational power anymore (at least for many of the calculations here)
- Other more relevant bottlenecks
 - Time new researchers take to learn methods
 - Sorting through the jungle of different methods to choose
 - Easily avoidably errors in running calculations
 - Lack of understanding how various methods affect free energies
 - Lack of common test systems to benchmark new methods
 - Time required to wrangle files in bunch of different formats
 - Lack of testing in code leading to errors only found later

I haven't got to force fields yet . . .

'The Checklist Manifesto'

- Formalize informal knowledge for complex systems
- Read from file, don't store in volatile memory
- Examples
 - Airline pilots
 - Guidelines for central line bloodstream infections
- What is the equivalent for molecular simulations?
- How do we create the culture?

Alchemistry.org: An experimental community site for learning about free energy calculations

- A continually updated review of theory and best practices
- Versioned best practices and checklists
- A place to post tutorials
- A place to post benchmark files
- Annotatable database of citations

We have validated the statistical error estimates for free energy calculations

- Benchmark test set for free energy calculations
- Paliwal and Shirts, J. Chem.
 Theory Comput, 7, 4115 (2011)

- Repeat calculations 100 times
- Compare analytical uncertainties with actual sample variance
- 10 different free energy methods

We can use multistate reweighting to validate simulation parameters for free energies

Takes about a minute to reevaluate one set of parameters 540 CPU years →1 CPU month

We can rapidly scan free energy differences as a function of parameters affecting free energies

Reminder: Predicting ∆∆G_{E→i} using only samples from a single initial set of parameters

H. Paliwal and M. R. Shirts, *J. Chem. Theory Comput.*, 9 (11), 4700–4717 (2013)

We identify simulation parameter choices with negligible difference from full energies

 $\Delta G_B = Benchmark set$

 $\Delta G_E = Expensive set$

 ΔG_0 = Optimized set

$\Delta\Delta G$ (kJ/mol) for anthracene solvation (kJ/mol)						
$\Delta G_B - \Delta G_E$	-0.602 ± 0.029	-0.363 ± 0.173	-0.585 ± 0.017	N/A	N/A	
$\Delta G_B - \Delta G_O$	-0.628 ± 0.031	-0.419 ± 0.171	N/A	-0.609 ± 0.018	N/A	
$\Delta G_E - \Delta G_O$	-0.027 ± 0.014	-0.056 ± 0.173	N/A	N/A	-0.030 ± 0.007	

Predictions using only benchmark set

Tested results using MBAR on both parameter sets

Direct differences in free energy

Key: $var(\Delta G_2 - \Delta G_1) = var(\Delta G_1) + var(\Delta G_1) - cov(\Delta G_1, \Delta G_2)$

- How can we minimize the introduction of coding errors?
 - Regression tests
 - Automated builds and verification
 - Unit tests
- Example: New GROMACS strategy
 - Automated regression tests and builds
 - All code reviewed and signed off on by multiple developers
 - Code review tied to bug reports

pen Merg	ed Abandoned		status:oper	1		5
			American			- 100
earch fo	r status:open					
ID	Subject	Owner	Project	Branch	Updated	CR
192559f0a	Fujitsu Sparc64 acceleration and general fixes for non-x86 builds	Erik Lindahl	gromacs	release-4-6	10:32 AM	
268bbf65	Made g_tune_pme work with 4.6 if user sets "-p" command line option	Carsten Kutzner	gromacs	release-4-6	7:34 AM	+1
146592c3	fixed GPU particle gridding performance issue	Berk Hess	gromacs	release-4-6	7:32 AM	+1
a6157db8	bugfix for md-vv + nose-hoover + (nstcalcenergy > nsttcouple)	Michael Shirts	gromacs	release-4-6	7:31 AM	+1
15f97854	Bump shared object version to 7	Mark Abraham	gromacs	release-4-5-patches	3:57 AM	+1
88f7210a	Update warning reference files	Mark Abraham	regressiontests	master	Feb 15	1
33495d57	Uncrustified code changes since 4.6	Mark Abraham	gromacs	release-4-6	Feb 15	
90ac4e5	Merge release-4-5-patches into release-4-6	Mark Abraham	gromacs	release-4-6	Feb 15	
37844c	Issue errors/warnings for ICC before 12.0.0	Roland Schulz	gromacs	release-4-6	Feb 15	
79a06b20	fixed issues with FEP soft-core and cut-off's	Berk Hess	gromacs	release-4-6	Feb 15	-1
a0a571d2	TODO: Update install guide from gmx-dev thread re: CFLAGS	Mark Abraham	gromacs	release-4-6	Feb 15	
a5b4c66	Fixes for install guide page.	Justin Lemkul	gromacs	release-4-6	Feb 15	
9a551260	Update outdated admin things	Mark Abraham	gromacs	release-4-6	Feb 15	
50998e3b	New patch release 4.6.1	Mark Abraham	gromacs	release-4-6	Feb 15	
79fd46e1	Fix CMake namespace pollution	Mark Abraham	gromacs	release-4-6	Feb 15	
071c6a1	Use explicit kernel pointer typecasts	Mark Abraham	gromacs	release-4-6	Feb 15	
f96fd044	Bump shared object version to 8	Christoph Junghans	gromacs	release-4-6	Feb 15	
Lb628d03	Some changes for md-vv extracted from 4.6	Michael Shirts	gromacs	release-4-5-patches	Feb 15	+1
5ad45fd2	fix out of source build for OpenMM	Christoph Junghans	gromacs	release-4-6	Feb 14	×
389f2ebf	[RFC] Script for running uncrustify for modified files.	Teemu Murtola	gromacs	master	Feb 14	
da2dcc7	Avoid dividing by zero	Mark Abraham	regressiontests	master	Feb 14	
16f58e9	Merge release-4-6 into master	Roland Schulz	gromacs	master	Feb 13	
30febe02	[tools] g_nse - tool to compute NSE signal	Alexey Shvetsov	gromacs	master	Feb 12	
06c5cd46	[structurefactors] Merge sfactor.c and nsfactor.c	Alexey Shvetsov	gromacs	master	Feb 12	
4b590f77	mkman; fix g_options.tex generation	Christoph Junghans	manual	release-4-6	Feb 12	+1

Press '7' to view keyboard shortcuts

Powered by Gerrit Code Review (2.5.1) | Report Bug

How do I know if I'm sampling from the correct distribution?

Run the same system, same options, but two different temperatures

$$P_{1}(E) = Q_{1}^{-1}\Omega(E)e^{-\beta_{1}E}$$

$$P_{2}(E) = Q_{2}^{-1}\Omega(E)e^{-\beta_{2}E}$$

$$\frac{P_{1}(E)}{P_{2}(E)} = \frac{Q_{2}}{Q_{1}}e^{(\beta_{2}-\beta_{1})E}$$

$$\ln \frac{P_{1}(E)}{P_{2}(E)} = \ln \frac{Q_{2}}{Q_{1}} + (\beta_{2} - \beta_{1})E$$

We can visually observe deviations from the correct energy distribution

These tests can validate simulation parameters in an automated, quantitative way

Example: Validating the molecular dynamics time steps for argon

40 fs time step

24 fs time step

8 fs time step

 β_2 - β_1 : 14 σ from true β_2 - β_1 : 8 σ from true

 β_2 - β_1 : 1.0 σ from true

Validation of Volume Fluctuations in NPT

Other variations on a theme

- Can separate kinetic and potential energies
 - Can use for MC algorithms as well
- NPT simulations
 - Can look at distribution of E + PV
 - Can look at distribution of V alone
 - Can look at joint distribution of E and V
 - Grand canonical simulations

- Quantitative measurement as well
- Python implementation: https://simtk.org/home/checkensemble

Validation tools

M. R. Shirts, *J. Chem. Theory Comput.*, 9, 909 (2013)

- Python implementation
 - https://github.org/shirtsgroup/checkensemble
- Quantitative, not just visual: weighted linear, nonlinear, and maximum likelihood fits
- NPT, NVT, and µVT supported
- Supports multiple MD formats (CHARMM, GROMACS, Desmond)
- Incorporates autocorrelation
- Automated graphing
- Replica exchange analysis

We can simplify conversion between simulation input files by automation:

Avoid N² InterMol different scripts

InterMol in practice (single precision comparison)

Summary statistics			
Type	Input	Output	Diff
Bond	1110.03527832	1110.03183140	0.00344692
Angle	4174.68994141	4174.69075062	-0.00080922
LJ-14	1785.31665039	1785.31840238	-0.00175199
Coulomb-14	19911.23632812	19911.25345736	-0.01712924
Potential	-178223.53125000	-178215.74991600	-7.78133400
All dihedrals	4841.90478516	4841.90709688	-0.00231172
Proper Dih.	4268.74169922	nan	nan
Ryckaert-Bell.	312.76715088	nan	nan
Improper Dih.	260.39593506	nan	nan
LJ (SR)	21584.59960938	nan	nan
Disper. corr.	-540.97607422	nan	nan
Coulomb (SR)	-201203.90625000	nan	nan
Coul. recip.	-29886.43945312	nan	nan
Dispersive	23369.91625977	nan	nan
Electrostatic	-211179.10937500	nan	nan
Non-bonded	-187809.19311523	nan	nan
Raw Potential	nan	845634.16454400	nan
Kinetic En.	nan	36705.08395224	nan
Extended En.	nan	1.94309968	nan
Corr_Energy	nan	-1023849.91655200	nan
constraints	nan	0.00000000	nan
far_exclusion	nan	981623.05136000	nan
far_terms	nan	1066.56822602	nan
nonbonded_elec	nan	-190933.43464240	nan
nonbonded_vdw	nan	22054.77657224	nan

alpha code at https://github.com/shirtsgroup/intermol

What are best practices ways to overcome sampling issues?

- Convergence error for shoving waters out of the way around rigid stuff
 - Easy if a good soft core alchemical pathway used and moderate sampling
- Convergence error due to the protein moving around
 - Hard

It's not the size, it's . . .

SAMPL4 blind prediction exercise
Model host-guest systems
Explicit solvent
Expanded ensemble
(serial replica exchange)
GROMACS 4.6.5

SAMPL4 blind prediction

J. I. Monroe and M. R. Shirts. J. Comput. Aid. Mol. Design. (2014)

With expanded ensemble, consistency in disappearing host and disappearing guest

Synergy: Use alchemical path to improve sampling

- Need enough <u>local simulation</u> to converge the free energy of displacing molecules in dense fluids
 - Move water out the way, move side chains
- Need enough long time scale simulation to sample the protein configurations
- Need a method to <u>accelerate sampling</u>
 - A bunch of acceleration methods
 - Using the alchemical pathway to increase sampling
- KEY: Swapping between states
 - Replica exchange
 - Expanded ensemble approaches: all states in one simulation
- Example: FEP/REST
 - One lambda to connect end state
 - One lambda to 'floppify' the binding site and ligand
 - Move through both lambdas simultaneously

Applications of sampling and free energy to the T4 lysozyme L99A model system

T4 Lysozyme

- Hamiltonian replica exchange between coupled and uncoupled states: absolute free energy calculation
- Linear Coulomb + soft-core van der Waals
- GPU accelerated implicit solvent dynamics via OpenMM
- 15 ns at each of 24 intermediates
- Restrain ligand near protein, but not to specific site
- Question: Can we sample well enough to know what ligand binding distribution looks like?

We get a consistent ensemble of small molecule binding locations

K. Wang, J. D. Chodera, Y. Yang and M. R. Shirts. J. Comput. Aid. Mol. Design. 27, 989 (2013)

We can decompose free energies according to different definitions of binding

Molecules	ΔG_{site}	$\Delta G_{all\ sites}$	$\Delta G_{overall}$	$\Delta G_{explicit}$	$\Delta G_{experimental}$
1-methylpyrrole	-3.48 ± 0.26	-4.15 ± 0.25	-5.05 ± 0.21	4.32 ± 0.08	-4.44
benzene	-4.26 ± 0.71	-5.15 ± 0.80	-6.01 ± 0.81	4.56 ± 0.20	-5.19
p-xylene	-4.01 ± 0.89	-4.94 ± 0.85	-5.72 ± 0.95	-3.54 ± 0.17	-4.67
phenol	-1.03 ± 0.32	-1.78 ± 0.47	-2.32 ± 0.58	-1.26 ± 0.09	> -2.74
)	

K. Wang, J. D. Chodera, Y. Yang and M. R. Shirts. J. Comput. Aid. Mol. Design. 27, 989 (2013)

We can capture structural heterogeneity and reorganization in the binding site

1-methylpyrrole

benzene

p-xylene

A known problem: Val111 movement is required for *p*-xylene to bind

Benzene co-crystal
p-xylene co-crystal

Mobley et al. J. Mol. Biol., 317, 1118 (2007)

We can capture known conformational rearrangement

RMSD 0.3Å crystal-like Rotation of Val111 53% of site

alternate

RMSD 2.7Å Shift of backbone moving Val111 32% of site

K. Wang, J. D. Chodera, Y. Yang and M. R. Shirts. J. Comput. Aid. Mol. Design. 27, 989 (2013)

Concluding Remarks?

- Not all of the roadblocks to better simulation are merely about efficiency, or even accuracy some are about <u>useability</u> and <u>robustness</u>
- We should be moving towards community best practices to change this
- Can we develop community knowledge to improve <u>useability</u>?
- Can we develop and compare the tools and methods as a community to increase <u>robustness</u>?
- Will this all decrease confusion and improve simplicity?

Shirts Group

Past members

Tri Pham

Alchemistry.org Coupled sampling InterMol Reweighting

Undergraduate

Jacob Rosenthal Mitch Slovin Alex Yang

External:

John Chodera (MSKCC) David Mobley (UC-Irvine)

Let's work to make free energy calculations methods more <u>powerful</u> AND <u>easier</u>

I find that when someone's taking time to do something right in the present, they're a perfectionist with no ability to prioritize, whereas when someone took time to do something right in the past, they're a master artisan of great foresight.