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Computational modeling and design 
is central to engineering

Why can’t we design drugs  
on a computer?



What is preventing free energy calculations from 
being more powerful and useful in drug design?

• Claim: not primarily lack of computational power anymore 
(at least for many of the calculations here)

• Other more relevant bottlenecks
• Time new researchers take to learn methods
• Sorting through the jungle of different methods to choose
• Easily avoidably errors in running calculations
• Lack of understanding how various methods affect free energies
• Lack of common test systems to benchmark new methods
• Time required to wrangle files in bunch of different formats
• Lack of testing in code leading to errors only found later

I haven’t got to force fields yet . . . 



‘The Checklist Manifesto’

• Formalize informal knowledge for 
complex systems

• Read from file, don’t store in 
volatile memory 

• Examples
• Airline pilots
• Guidelines for central line bloodstream 

infections

• What is the equivalent for 
molecular simulations?

• How do we create the culture?



Alchemistry.org: An experimental community site for 
learning about free energy calculations 

• A continually updated review of theory and best practices
• Versioned best practices and checklists
• A place to post tutorials
• A place to post benchmark files
• Annotatable database of citations



We have validated the statistical error estimates 
for free energy calculations

• Benchmark test set for free 
energy calculations

• Paliwal and Shirts, J. Chem. 
Theory Comput, 7, 4115 (2011)

- + -+

• Repeat calculations 100 times
• Compare analytical uncertainties 

with actual sample variance
• 10 different free energy methods



We can use multistate reweighting to validate 
simulation parameters for free energies

LJcut= 0.9 nm

LJcut= 0.95 nm

LJcut= 0.85 nm

LJcut= 1.0 nm

LJcut= 0.80 nm
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From energies of MK 
states evaluated at 

samples from K 
simulations 

Compute free energies 
of MK states

Takes about a minute to reevaluate one set of parameters
540 CPU years →1 CPU month



Reminder: Predicting ∆∆GE→i using only samples from a single initial 
set of parameters

We can rapidly scan free energy differences as a 
function of parameters affecting free energies

H. Paliwal and M. R. Shirts,  J. Chem. Theory Comput., 9 (11), 4700–4717 (2013) 



We identify simulation parameter choices with 
negligible difference from full energies

Predictions using only 
benchmark set Tested results using MBAR on 

both parameter setsDirect differences in 
free energy

(kJ/mol)

Table 6: Predictions and validation results for anthracene solvation match within one and two
standard deviation for DDGEO. The predictions that DG for expensive and optimized parameter
sets are greater than DG for benchmark parameter set is correct.

Prediction Validation using
One parameter set Two parameter sets simultaneously

sampled at ! B B or E or O B and E B and O E and O
DG (kJ/mol) for anthracene solvation

Benchmark (B) -9.624±0.121 -9.624±0.121 -9.853±0.086 -9.823±0.086 N/A
Expensive (E) -9.023±0.125 -9.261±0.123 -9.267±0.087 N/A -9.267±0.086
Optimized (O) -8.996±0.125 -9.205±0.121 N/A -9.214±0.086 -9.237±0.086

DDG (kJ/mol) for anthracene solvation
DGB �DGE -0.602±0.029 -0.363±0.173 -0.585±0.017 N/A N/A
DGB �DGO -0.628±0.031 -0.419±0.171 N/A -0.609±0.018 N/A
DGE �DGO -0.027±0.014 -0.056±0.173 N/A N/A -0.030±0.007

50

∆GB = Benchmark set
∆GE = Expensive set
∆GO = Optimized set

Key: var(∆G2-∆G1) = var(∆G1)+ var(∆G1) - cov(∆G1, ∆G2)



What sort of code validation can be done?
Code validation for molecular simulation

• How can we minimize the introduction of coding 
errors?
• Regression tests
• Automated builds and verification
• Unit tests

• Example: New GROMACS strategy
• Automated regression tests and builds
• All code reviewed and signed off on by multiple 

developers
• Code review tied to bug reports
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How do I know if I’m sampling from the correct 
distribution?

P1(E) = Q�1
1 ⌦(E)e��1E

P2(E) = Q�1
2 ⌦(E)e��2E

Run the same system, same options, 
but two different temperatures

P1(E)

P2(E)
=

Q2

Q1
e(�2��1)E

ln
P1(E)

P2(E)
= ln

Q2

Q1
+ (�2 � �1)E



We can visually observe deviations 
from the correct energy distribution

β2-β1: 24 σ from true value

β2-β1: 0.66 σ from true value



These tests can validate simulation parameters 
in an automated, quantitative way

• Example: Validating the molecular dynamics time steps for 
argon

40 fs time step 24 fs time step 8 fs time step

β2-β1: 14 σ from true β2-β1: 8 σ from true β2-β1: 1.0 σ from true



Validation of Volume Fluctuations in NPT
Parrinello-Rahman

Berendsen



Lennard-Jones fluidModel with K(V)

Blue = Data
Red = Fit

Other variations on a theme
• Can separate kinetic and potential energies

• Can use for MC algorithms as well

• NPT simulations
• Can look at distribution of E + PV 
• Can look at distribution of V alone 
• Can look at joint distribution of E and V
• Grand canonical simulations 

• Quantitative measurement as well
• Python implementation: https://simtk.org/home/checkensemble



Validation tools

• Python implementation 
•  https://github.org/shirtsgroup/checkensemble

• Quantitative, not just visual: weighted linear, nonlinear, and 
maximum likelihood fits

• NPT, NVT, and μVT supported
• Supports multiple MD formats (CHARMM, GROMACS, 

Desmond)
• Incorporates autocorrelation
• Automated graphing 
• Replica exchange analysis

M. R. Shirts, J. Chem. Theory Comput., 9, 909 (2013)



We can simplify conversion between simulation 
input files by automation:

InterMol

Molecular 
System

Molecule 1

Molecule 2

Molecule 1
Copy 1

Molecule 1
Copy 2

Coordinates

Molecule 2
Copy 2

Coordinates

Coordinates

Molecule 3
Copy 3

Coordinates

Atom 2 
Parameters

Molecular 
Parameters

Atom 2 
Parameters

Molecular 
Properties

Global Parameters 
and Potentials

Global Structural 
Information

Atom 1 
Parameters

Atom 1 
Parameters

ForceField Structure

.gro 
(structure)

.top 
(parameter)

GROMACS

.crd 
(structure)

.prmtop 
(parameter)

AMBER

.mae/.cms/.dms 
(structure and 

parameter)

DESMOND/
MAESTRO

System
Representation

data.XXX 
(structure 

and 
parameter)

LAMMPS

.crd 
(structure)

parm and psf
(parameter)

CHARMM

.pdb
(structure)

CHARMM 
parm and psf 
(parameter)

NAMD

Avoid N2 
different scripts



InterMol in practice (single precision comparison)

alpha code at https://github.com/shirtsgroup/intermol



What are best practices ways to overcome 
sampling issues?

• Convergence error for shoving waters out of the way 
around rigid stuff
• Easy if a good soft core alchemical pathway used and moderate 

sampling

• Convergence error due to the protein moving around
• Hard



It’s not the size, it’s . . . 
SAMPL4 blind prediction exercise

Model host-guest systems
Explicit solvent

Expanded ensemble 
(serial replica exchange)

GROMACS 4.6.5

Ke
nd

al
l t

au

SAMPL4 blind prediction

J. I. Monroe and M. R. Shirts. J. Comput. Aid. Mol. Design. (2014)



With expanded ensemble, consistency in 
disappearing host and disappearing guest
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475for the relative free energies of binding is 0.67 kcal/mol.

476The parameters derived from this fitting procedure do not

477appear to be particularly transferable from one set of CB7

478guests to another (Table 1). One likely reason is the fact that

479the guests in the training set were not representative of the

480SAMPL4 ligand set. While both low and high affinity

481binders are included, all low affinity guests were small,

482uncharged molecules. All high affinity training set guests

483were rigid, polycyclic molecules, with the majority being

484charged. The SAMPL4 guests were all charged and were

485more varied in their chemical structure, resulting in a wider

486range of predicted and experimental affinities. While a more

487representative training set would help in deriving more

488appropriate parameters, there appears to be no significant

489benefit to ‘‘correcting’’ binding free energies of SAMPL4

490ligands with the parameters derived from our training set.

491While such an empirical fit directly applied to the SAMPL4

492CB7 ligands themselves does improve the RMSE to

4931.82 ± 0.42 kcal/mol (Table 1), the parameters seem to be

494highly specific to the data being fit and lack consistent

495transferability.

496Checking the convergence of multiple simulation

497methods

498To check the convergence of our CB7 host expanded

499ensemble simulations for the force field parameters used,

Fig. 1 Computed free energies of binding are plotted against
experimental values for SAMPL4 CB7 guests (a), SAMPL4 OA
guests (b), and for the CB7 training set (c). Relative values were
computed with respect to CB7 guest 1 (a), OA guest 1 (b), and CB7
guest 20 (c). Predicted absolute binding free energies were inconsis-
tent with experiment for both CB7 and OA (a, b). Corrections from
empirical fit parameters to the van der Waals and Coulombic terms
reduced the RMSE of the training set from 5.26 ± 0.67 to
1.53 ± 0.27 kcal/mol. For the SAMPL4 ligands, correcting using
the parameters derived from fitting the training set only reduced
RMSE from 3.58 ± 0.67 to 2.88 ± 0.33 kcal/mol indicating limited
transferability of these empirically fit parameters
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Fig. 2 Free energies of binding from fixed lambda state simulations
and expanded ensemble simulations disappearing the host are plotted
against those computed from expanded simulations uncoupling the
guest. More than half of the points fall within 1 SD of the y = x line,
with an RMSE of 0.78 ± 0.15 kcal/mol and a correlation coefficient
of 0.99 observed between all expanded ensemble simulations
disappearing the host and the guest (red dots). This indicates
convergence between expanded ensemble simulations employing
either alchemical pathway. The two squares for ligand 10 at about -
8 kcal/mol for the expanded ensemble free energies represent results
from two initial starting configurations for fixed lambda simulations.
Uncertainties are standard errors in the calculations
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Synergy: Use alchemical path to improve sampling

• Need enough local simulation to converge the free 
energy of displacing molecules in dense fluids
• Move water out the way, move side chains

• Need enough long time scale simulation to sample the 
protein configurations

• Need a method to accelerate sampling
• A bunch of acceleration methods
• Using the alchemical pathway to increase sampling 

• KEY: Swapping between states
• Replica exchange
• Expanded ensemble approaches: all states in one simulation

• Example: FEP/REST
• One lambda to connect end state
• One lambda to ‘floppify’ the binding site and ligand
• Move through both lambdas simultaneously



Applications of sampling and free energy to the T4 
lysozyme L99A model system

• Hamiltonian replica exchange between coupled and 
uncoupled states: absolute free energy calculation

• Linear Coulomb + soft-core van der Waals
• GPU accelerated implicit solvent dynamics via OpenMM
• 15 ns at each of 24 intermediates
• Restrain ligand near protein, but not to specific site

• Question: Can we sample well enough to know what 
ligand binding distribution looks like?

T4 Lysozyme

Original Binder

Binds, 
but doesn’t fit 

apo hole
Doesn’t bind

+



K. Wang, J. D. Chodera, Y. Yang and M. R. Shirts. J. Comput. Aid. Mol. Design. 27, 989 (2013)
OriginalBinder Binder Nonbinder

We get a consistent ensemble of 
small molecule binding locations



We can decompose free energies according to 
different definitions of binding

Molecules �G

site

�G

all sites

�G

overall

�G

explicit

�G

experimental

1-methylpyrrole -3.48 ± 0.26 -4.15 ± 0.25 -5.05 ± 0.21 -4.32 ± 0.08 -4.44

benzene -4.26 ± 0.71 -5.15 ± 0.80 -6.01 ± 0.81 -4.56 ± 0.20 -5.19

p-xylene -4.01 ± 0.89 -4.94 ± 0.85 -5.72 ± 0.95 -3.54± 0.17 -4.67

phenol -1.03± 0.32 -1.78 ± 0.47 -2.32 ± 0.58 -1.26 ± 0.09 > -2.74

TABLE IV: Comparisons between calculated and experimental binding free energies of four different

molecules in kcal/mol. G

site

is the binding free energy to the most populated cluster, which except for

phenol is the binding cavity. The binding energy of phenol to the binding cavity is -0.16± 0.53 kcal/mol.

�G

all sites

is the binding energy over all specifically-bound clusters, while �G

overall

is over the entire

protein. �G

explicit

are explicit solvent simulations from Ref. [15].

should be slightly more favorable than the all-sites free energy, because the overall free energy

also includes the completely nonspecific binding to the protein and the low concentration in the

simulated volume near the protein. However, in this study this discrepancy approaches 1 kcal/mol.

This difference appears to in part be because of the granularity of the clustering algorithm, which

omits density outside the cluster if it falls below the 8 times average density background. We per-

formed an alternate binding calculation for the 1-methylpyrrole case in which we set the energies

of all samples not in the set of grid cubes assigned to binding site clusters equal to energies drawn

from the samples away from the protein. In this case, the overall binding affinity changed from

-5.05 to -4.19 kcal/mol, indicating that the difference between the all-site free energy and overall

free energy was due to samples associated with the protein, not samples at other locations in the

box. However, it is still unclear how much of the weight is due to samples from the binding sites

that were not included in the clustering because of the grid granularity and how much is due to

samples weakly associated to the protein but not part of any binding cluster. With these missing

densities, all-site binding affinities would be shifted somewhat towards the overall binding affinity,

and the individual site binding affinities would also become slightly more favorable.

F. Discussion

One of the difficulties in GPU-accelerated MD simulations is parallelization of a single simu-

lation across multiple GPUs. The highly parallelized replica structure of HREMD made it suitable

30
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K. Wang, J. D. Chodera, Y. Yang and M. R. Shirts. J. Comput. Aid. Mol. Design. 27, 989 (2013)



Fig. 5 Superimposed poses (100 each) at the experimental binding site for all three binders (1-methylpyrrole, benzene and p-xylene). For
1-methylpyrrole and benzene, configurational noise is limited, while p-xylene transitions between two different clusters during the simulation

Fig. 6 Correlation between ligand binding site occupation and
Val111 displacement for p-xylene and benzene. RMSD of the ligand
from the crystal structure with respect to the RMSD of Val111 from
the crystal structure (upper graphs) and the Val111 v dihedral angle
(C - Ca - Cb - Cc) (lower graphs) for p-xylene (left side, a and

c) and benzene (right side b and d). All calculations are of fully
interacting ligands. Val111 must move for p-xylene binding to occur,
either by a torsional angle rotation or by backbone motion, but
benzene only binds to the unbound crystallographic configuration of
Val111
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We can capture structural heterogeneity and 
reorganization in the binding site

1-methylpyrrole benzene p-xylene

K. Wang, J. D. Chodera, Y. Yang and M. R. Shirts. J. Comput. Aid. Mol. Design. 27, 989 (2013)



A known problem:
Val111 movement is required for p-xylene to bind

Mobley et al. J. Mol. Biol., 317, 1118  (2007)

Benzene co-crystal

p-xylene co-crystal



We can capture known conformational rearrangement
Li
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benzene binding (Fig. 6b), Val111 stays in the initial

location regardless of whether the ligand is bound or not.
This demonstrates that our HREMD decoupling strategy

can significantly accelerate such coupled configurational

changes on binding that would normally require long
simulations of at least several nanoseconds in standard MD

simulations [15]. HREMD does this by removing the

ligand from the pocket so that the dihedral transition can
occur.

If we look directly at the Val111 v dihedral angle

(C–Ca–Cb–Cc), the correlation between binding of ligand
and the conformational change of Val111 is not complete.

There are in fact configurations that have low p-xylene

RMSD, but where the dihedral corresponds to the bound
benzene structure (181L), unlike the p-xylene structure

(3GUM). This is possible because the protein backbone

shifts out, allowing Val111 to move, a binding mode not
observed in previous free energy calculations [15]. Fig-

ure 7 shows two low RMSD structures from each of the

two clusters. Cyan and orange are used for the dihedral
shift (RMSD = 0.34 Å) and alternative backbone shift

(RMSD = 2.87 Å) structures, respectively. It is not clear if

this observed difference in binding modes from previous
simulations is due to force field errors, implicit solvent

deficiencies, lack of protein relaxation, or some other

unknown reason.
To quantify the relative frequency of the two binding

modes, we clustered all the conformations in the binding

site of p-xylene. Only two clusters with more than 10 % of
all the conformations are present, with respective occu-

pancies of 0.53 and 0.32. By comparing to the p-xylene
crystal structure, we found that cluster one has a 0.56 Å

average RMSD with respect to the crystal structure while

cluster two has a 3.03 Å average RMSD. There are thus
two primary binding modes in this location-defined cluster

that can be distinguished by their orientation.

One unrelated but important observation from Fig. 6 is
that there are no ligand observations in the range of 5 and

10 Å for either benzene or p-xylene in the interacting state,

indicating that there is no observed physical entry route for
the ligand in the simulation. Instead, it hops back and forth

between bulk and the binding site via the unphysical
decoupling pathway.

Comparison of docking and our modified HREMD
methodology

It is instructive to compare the performance of docking
methods to our methodology. The T4 lysozyme L99A

system has proven a challenging case for UCSF’s DOCK

program as well as other docking programs [43–46].
Therefore, as an additional check we attempted molecular

docking to identify binding sites and poses, in our case

using AutoDock. We first compared the average ligand
RMSD from the crystal structures for all binders in both

cases. For AutoDock, the average RMSD was calculated

over 50 top poses, while for our modified HREMD, the
average RMSD was calculated over all poses in the highest

probability binding site. We also compared the percentages

of poses with RMSD (from the experimental co-crystal
structure for each ligand after alpha carbon alignment) with

values less than 2 Å. Since there is no crystal structure for

the nonbinder phenol, we used the benzene co-crystal and
replaced the benzene with phenol and used RMSDs to that

modeled crystal structure to see if either approach incor-

rectly placed phenol into the binding site. Results are
shown in Tables 2 and 3.

We note that the percentage of ligands in the binding

site volume (as seen in Fig. 4) may be higher than the
percentage within 2 Å RMSD of the crystal structure

because of local protein rearrangement during the simula-

tion. For example, *40 % of p-xylene configurations were
in the binding site volume, and the average RMSD of the

alternate configurations was 3.03 Å compared to the

average RMSD of 0.56 Å without protein rearrangement. If
such protein rearrangements observed in simulation are

accepted as potentially physical, then these alternate con-

figurations should also be considered part of the binding
ensemble at this site.

Surprisingly, AutoDock and the more sophisticated

methodology presented here produced comparable results
for the binding site locations. Fraction within a given

RMSD does not mean exactly the same thing when com-

paring the two methods. In the docking runs, only 50 poses
were generated out of hundreds of thousands of attempts

Fig. 7 Two representative structures observed in the simulation of p-
xylene. Cyan and orange are crystal-like (RMSD = 0.3 Å from
crystal) and alternative (RMSD = 2.87 Å from crystal) structures,
respectively. In the crystal-like structure, Val111 dihedral changes
from the configuration found in the apo or small binder crystals. In the
alternative structure, Val111 shifts away via backbone motion
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crystal-like
RMSD 0.3Å

Rotation of Val111
53% of site

alternate
RMSD 2.7Å

Shift of backbone 
moving Val111

32% of site

benzene

Fig. 5 Superimposed poses (100 each) at the experimental binding site for all three binders (1-methylpyrrole, benzene and p-xylene). For
1-methylpyrrole and benzene, configurational noise is limited, while p-xylene transitions between two different clusters during the simulation

Fig. 6 Correlation between ligand binding site occupation and
Val111 displacement for p-xylene and benzene. RMSD of the ligand
from the crystal structure with respect to the RMSD of Val111 from
the crystal structure (upper graphs) and the Val111 v dihedral angle
(C - Ca - Cb - Cc) (lower graphs) for p-xylene (left side, a and

c) and benzene (right side b and d). All calculations are of fully
interacting ligands. Val111 must move for p-xylene binding to occur,
either by a torsional angle rotation or by backbone motion, but
benzene only binds to the unbound crystallographic configuration of
Val111
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from the crystal structure with respect to the RMSD of Val111 from
the crystal structure (upper graphs) and the Val111 v dihedral angle
(C - Ca - Cb - Cc) (lower graphs) for p-xylene (left side, a and

c) and benzene (right side b and d). All calculations are of fully
interacting ligands. Val111 must move for p-xylene binding to occur,
either by a torsional angle rotation or by backbone motion, but
benzene only binds to the unbound crystallographic configuration of
Val111
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Val111 Torsion

p-xylene

Fig. 5 Superimposed poses (100 each) at the experimental binding site for all three binders (1-methylpyrrole, benzene and p-xylene). For
1-methylpyrrole and benzene, configurational noise is limited, while p-xylene transitions between two different clusters during the simulation
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Val111 displacement for p-xylene and benzene. RMSD of the ligand
from the crystal structure with respect to the RMSD of Val111 from
the crystal structure (upper graphs) and the Val111 v dihedral angle
(C - Ca - Cb - Cc) (lower graphs) for p-xylene (left side, a and

c) and benzene (right side b and d). All calculations are of fully
interacting ligands. Val111 must move for p-xylene binding to occur,
either by a torsional angle rotation or by backbone motion, but
benzene only binds to the unbound crystallographic configuration of
Val111
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Fig. 5 Superimposed poses (100 each) at the experimental binding site for all three binders (1-methylpyrrole, benzene and p-xylene). For
1-methylpyrrole and benzene, configurational noise is limited, while p-xylene transitions between two different clusters during the simulation

Fig. 6 Correlation between ligand binding site occupation and
Val111 displacement for p-xylene and benzene. RMSD of the ligand
from the crystal structure with respect to the RMSD of Val111 from
the crystal structure (upper graphs) and the Val111 v dihedral angle
(C - Ca - Cb - Cc) (lower graphs) for p-xylene (left side, a and

c) and benzene (right side b and d). All calculations are of fully
interacting ligands. Val111 must move for p-xylene binding to occur,
either by a torsional angle rotation or by backbone motion, but
benzene only binds to the unbound crystallographic configuration of
Val111
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Val111 Torsion

K. Wang, J. D. Chodera, Y. Yang and M. R. Shirts. J. Comput. Aid. Mol. Design. 27, 989 (2013)
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Concluding Remarks?

• Not all of the roadblocks to better simulation are merely about 
efficiency, or even accuracy some are about useability and 
robustness

• We should be moving towards community best practices to 
change this

• Can we develop community knowledge to improve useability? 
• Can we develop and compare the tools and methods as a 

community to increase robustness?
• Will this all decrease confusion and improve simplicity?
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Let’s work to make free energy calculations
 methods more powerful AND easier 


