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Molecular Docking

• Why is docking popular?

• It is easy to use

• It is fast


• Why is docking fast?

• Rigid receptors 


• no internal degrees of freedom

• pre-calculated interaction grids


• It is focused on minimization, not 
statistical sampling


• Can free energy calculations apply 
some ideas from docking?

• Yes

• With implicit ligand theory, free 

energy calculations can use rigid 
receptors.

with 500 orientations, 

1 ligand every 5 seconds

Coleman et al., PloS One 2013



Statistical Mechanics of Noncovalent Association
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Implicit Solvent Theory

Dong et. al.,  
Methods in Cell Biology 2008
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Implicit Solvent Theory

Dong et. al.,  
Methods in Cell Biology 2008
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Implicit Ligand Theory
U(rX) = U(rX) +W (rX)

Effective Potential Energy
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Implicit Ligand Theory

• Rigorous binding free energies


• Rigid receptor

Minh, Journal of Chemical Physics 137:104106, 2012
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ILT?

Structure-Based Free Energy Methods
Ac

cu
ra

cy

log(Computational Expense)

End-point 
Approximations 
(e.g. MM/PBSA)

Molecular Docking 
(e.g. DOCK, AutoDOCK)

Alchemical  
Methods in Explicit 

Solvent

Long unbiased 
simulations  

(MSMs/Anton)
...

Rigorous Methods in 
Implicit Solvent  

(M2/YANK/BEDAM)



I. Sample configurations of the receptor

II. Estimate the binding PMF for each ligand

III. Estimate the binding free energy for each ligand

B̂(rR) = ���1 ln
1

N

NX

n=1

e�� (rRL,n)

Sample mean of exponential average

Only needs to be done once! 
Unbiased MD simulation/ 
Umbrella Sampling/ 
Markov State Model  
from heroic calculations. 
Snapshot database for  
well-known targets?

New type of free energy 
Lessons more broadly  
applicable?



Demonstration on 
Cucurbit[7]uril

Minh, Journal of Chemical Physics 137:104106, 2012.
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Binding PMF

Binding PMFs using 

Hamiltonian replica exchange

in NAMD
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100 receptor snapshots from 
standard molecular dynamics

Binding Free Energy
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TABLE IV. Estimates of the binding free energy !G◦ (kcal/mol) using the
PBSA model. First, the binding PMF B(rR) is estimated with the dominant
state approximation (min {"(rR)}) or based on Eq. (23), using Hamiltonian
replica exchange for Bcpl (HREX). Then, !Ĝ◦ is from the dominant state
approximation (min{B̂(rR)}) or based on Eq. (22) (EXP). The bottom rows
show the correlation coefficient (R2) and root mean square error (RMSE,
Eq. (25)) with respect to isothermal titration calorimetry experiments (ITC)
and mining minima calculations (Gilson) from Moghaddam et al.,32 and the
fourth column.

Ligand
B̂(rR) min{"(rR)} min{"(rR)} HREX HREX
!Ĝ◦ min

{
B̂(rR)

}
EXP min

{
B̂(rR)

}
EXP

AD1 − 28.6 − 27.2 − 22.0 − 20.1
AD2 − 36.4 − 34.6 − 27.6 − 25.4
AD3 − 38.1 − 36.8 − 27.6 − 26.2
AD4 − 43.1 − 40.4 − 29.8 − 27.1
AD5 − 35.8 − 33.6 − 26.8 − 24.4
B02 − 29.8 − 27.9 − 21.0 − 18.1
B05 − 37.9 − 35.6 − 23.7 − 21.4
B11 − 48.5 − 45.7 − 23.1 − 20.5
F01 − 22.7 − 21.3 − 10.2 − 7.6
F02 − 30.9 − 28.8 − 17.0 − 14.6
F03 − 28.7 − 27.0 − 14.5 − 13.2
F06 − 35.6 − 33.8 − 21.3 − 19.7

R2
IT C 0.849 0.855 0.684 0.704

RMSEITC 17.3 15.3 5.8 4.5

R2
Gilson 0.787 0.795 0.926 0.925

RMSEGilson 15.8 13.9 3.5 2.4

R2
Exp 0.723 0.736 0.996

RMSEExp 15.5 13.6 2.3

of using a single receptor structure to estimate binding free
energies.

In spite of the variability of binding PMFs, for the lig-
ands in the test set, the average value of !G◦ appears to sta-
bilize after a relatively small number (about 15) of receptor
snapshots (Fig. 2 and Fig. 3 in the supplementary material37).
Using a greater number of snapshots slightly reduces the vari-
ance of binding free energy estimates. After the certain point,
however, further reduction in the variance of !Ĝ◦ is limited
by the variance in binding PMF estimates.

V. DISCUSSION

While the good agreement between implicit ligand and
M2 calculations provides a proof of principle, the conver-
gence and accuracy of implicit ligand calculations will differ
with other classes of receptor-ligand pairs. With protein-
ligand pairs, for example, representative sampling of recep-
tors and finding low-energy poses of the ligand will likely
require much more MD simulation time. On the other hand,
many protein-ligand systems are not as strongly charged and
may be less sensitive to the electrostatic solvation free energy.
Due to these variabilities, assessments for the feasibility of
implicit ligand calculations in different classes of systems
will prove valuable. Tests for convergence and accuracy may
be similar to those performed for the CB[7] system.

Numerous opportunities remain for further methodologi-
cal improvement and optimization of implicit ligand free en-
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FIG. 2. (a) Histogram of binding PMF estimates B̂(rR) (kcal/mol) of B02
to 100 snapshots of CB[7] using PBSA energies. The vertical line shows the
mean binding PMF for the minimized receptor structure. (b) and (c) Estimates
of the binding free energy !G◦ of B02 to CB[7] (kcal/mol), using PBSA
energies, as a function of the number of receptor snapshots. The line and
error bars denote the mean and standard deviation from bootstrapping: the
binding free energy is estimated 100 times using random selections of N out
of 100 binding PMFs. Analogous plots for the other ligands in this study are
available as Figs. 2 and 3 in the supplementary material.37

ergy calculations. The accuracy of implicit ligand calculations
(and M2 calculations) may be limited by the quality of the
force field. The decomposition of the binding PMF in Eq. (23)
provides a facile means to integrate alternate and potentially
more expensive potential energies, e.g., quantum mechanical
calculations or more sophisticated nonpolar solvation free en-
ergies. Modeling may also be improved by the inclusion of a
few explicit water molecules (see supplementary material.37)
Another potential avenue for improvement is the fine-tuning
of the replica exchange protocol (e.g., using implicit solvent
or optimizing the number of stages and values of λ for a par-
ticular system) or implementing alternative methods to esti-
mate the binding PMF and binding free energy.

Even without modifying the replica exchange protocol,
computations may be accelerated by optimizing existing MD
simulation packages for implicit ligand theory. Few modern
MD simulation programs take full advantage of rigid degrees
of freedom by skipping the calculation of pairwise interac-
tions between rigid atoms. Even fewer implicit-solvent mod-
els are designed with rigid receptors in mind;38 implicit ligand
theory may inspire the development of such models.

Implicit ligand theory also provides guidance on how
to understand and improve existing molecular docking algo-
rithms. The definition of "(rRL) provides a straightforward
functional form that can be used to account for solvation free
energies and ligand internal energies (strain), which have been
noted to be important factors in binding free energies,39 but
are frequently ignored in the interaction energy functions used
by docking packages. Implicit ligand theory also delineates

Downloaded 13 Sep 2012 to 152.3.71.111. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions

Minh, Journal of Chemical Physics 137:104106, 2012.



Protein-ligand binding PMF 
estimation: the method

Shenfeld, Xu, Eastwood, Dror, Shaw. Physical Review E 2009

mann constant and T is the temperature. The equilibrium
probability density at a point x in phase space is p!!x"
=Z!

−1 exp#−h!!x"$, where Z!=%e−h!!x"dx is the partition func-
tion. Let f!=−ln Z! be the free energy multiplied by ", and
!!!x"=ln p!!x"= f!−h!!x" be the log probability. In this no-
tation, " may be a component of !. We will refer to h as the
Hamiltonian and to f as the free energy of the system. We
denote differentiation with respect to !i by !i, and second
derivatives by !ij. We assume throughout that we can differ-
entiate with respect to !i under the integral sign.

The Fisher information matrix g at ! is defined by

g!!"ij & cov!!!i!!,! j!!" = '!i!!!x" · ! j!!!x"(!, !1"

where angled brackets denote expectation with respect to p!

!the second equality follows because '!i!!!x"(!=0". Under a
few mild regularity conditions !#22$, 2.1", g is a well-defined
positive-definite quadratic form varying smoothly with !, en-
dowing D with a Riemannian metric, called the Fisher infor-
mation metric. The norm induced by g at !!D is denoted
) · )!. The Riemannian length of a path #!t" in D !0$ t$1" is

L!#" & *
0

1

)#̇)#dt = *
0

1 +,
i,j

#̇ig!#"ij#̇
jdt , !2"

where #̇=d# /dt. The Riemannian distance between !a and
!b is defined as the length of the connecting geodesic, and is
denoted L!!a ,!b".

The thermodynamic metric is closely related to the ther-
mal fluctuations. This is most apparent when h! is linear in
!, i.e., h!!x"=,i!

iXi!x", where Xi are functions of the mi-
crostate x alone. In this case we say that the system is in
Gibbs ensemble, and we have

g!!"ij = − !ij f!!" = cov!!Xi,Xj" , !3"

emphasizing the connection between the metric and fluctua-
tions. We define the energy coordinates by Ui!!"=!i f!

= 'Xi(!; in the coordinates U, the metric is given by g!U"
=g!!"−1 !#22$, 3.4, 4.1".

As an example, consider n molecules of ideal gas in the
isothermal-isobaric ensemble. Here, h is given by the en-
thalpy multiplied by ": h!x"="E!x"+"PV!x", so the system
is in Gibbs ensemble with respect to the coordinates !" ,"P".
The metric in these coordinates is

g!","P" = -var!E" 0

0 var!V" . = "−2-CVkB
−1 0

0 n%P−1 . ,

!4"

where CV is the heat capacity and % is the isothermal com-
pressibility. Geodesics for an ideal gas are illustrated in Fig.
1. The connection between the thermodynamic length and
fluctuations is intuitive in the energy coordinates, where the
metric is g!'E( , 'V("=g!" ,"P"−1= ! var!E"−1 0

0 var!V"−1 ". The distance
between two states differing in energy by d'E( and in volume
by d'V( is dL= #d'E(2 /var!E"+d'V(2 /var!V"$1/2; the states
are close if the fluctuations in energy and volume are large
compared to the difference in their equilibrium values.

III. MINIMIZING VARIANCE IN FREE-ENERGY
CALCULATIONS

We study the estimation of the free-energy difference &f
between two states !a ,!b!D, based on samples drawn from
a sequence of intermediate states, !0 ,!1 , . . . ,!k, where !0
=!a and !k=!b.

Theorem 1. Let & f̂ be an unbiased estimator for &f based
on a total of N observations. Then in the limit where the
intermediates !i are close,

var!& f̂" '
L!!a,!b"2

N
.

This bound can be achieved asymptotically as N→( by
choosing the !i along the geodesic connecting !a and !b.

Our argument will also show that to minimize the vari-
ance, the amount of sampling for the estimation of &f i
= f!i+1

− f!i
should be proportional to L!!i ,!i+1". In particular,

when sampling equally at each !i, the intermediates should
be equidistant.

We first prove the theorem for a special case, which high-
lights that the thermodynamic length represents an inherent
information-theoretical bound on the variance of a free-
energy estimator. Suppose that the system is in Gibbs en-
semble and & f̂!x" is any unbiased estimator for &f given an
observation x drawn from !b. Let

)! & f! − fa − ,
i

!i f /a · !!i − !a
i " . !5"

Then we obtain an estimator for )b, namely: )̂b!x"=& f̂!x"
−,i!i f /a ·&!i, whose variance is the same as that of & f̂ . Con-
versely, any unbiased estimator for )b gives rise to an unbi-
ased estimator for &f with the same variance. Note that
!i) /b=!i f /b−!i f /a=&Ui.

By the Cramér-Rao lower bound #22$, using g!U"
=g!!"−1 and the invariance of the norm under coordinate
transformations, we have

Β"1! "kBT#

Β
P

ln Β

ln
"ΒP#

FIG. 1. Left: geodesics for an ideal gas in the !" ,"P" coordi-
nates. Right: in the #ln " , ln!"P"$ coordinates, the metric is
g(ln " , ln!"P")=diag!CVkB

−1 ,n", and the geodesics are Euclidean
straight lines. Quasistatic adiabatic expansions of an ideal gas fol-
low geodesics !thick lines". Equidistant points on the geodesics are
shown as circles.
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are close if the fluctuations in energy and volume are large
compared to the difference in their equilibrium values.
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shown as circles.

SHENFELD et al. PHYSICAL REVIEW E 80, 046705 !2009"

046705-2

LJ attractive

LJ repulsive

Electrostatic (PB/SA using APBS)

Grids based on AMBER ff12

506 MENG, SHOICHET, AND KUNTZ 

the resulting ligand orientations. Programs involved 
in the overall process are shown in Figure 1. The 
computer programs MSl8>l9 and DelPhiZ0S2' are dis- 
tributed independently. 

Site Characterization 

We characterize the site as described previ- 
ou,~ly.~. '~-'~ The Connolly MS is used to 
generate a molecular surface as defined by Rich- 
ardsF2 Spheres that fill surface indentations are then 
calculated with the program SPHGEN? Each sphere 
touches the surface at two points and is centered 
along the surface normal at one of the points. Only 
one sphere per surface atom, the largest that does 
not intersect the surface, is generally retained; 
groups of overlapping spheres are referred to as clus- 
ters. The cluster containing the greatest number of 
spheres tends to occupy the largest indentation of 
the surface, typically the active site of an enzyme. 
The user selects one or more clusters for docking. 

Calculation of Grids 

We use the following means of evaluating molecular 
complexes: contact score, electrostatic interaction 
energy, and molecular mechanics interaction energy. 

While each option makes use of a cubic lattice, 
there are differences in the details of implementa- 
tion. The contact grid is automatically constructed 
to enclose the input atoms, which may form part or 
all of the receptor. The electrostatic grid encloses a 
cubic volume, which, due to the nature of the cal- 
culation, should include the entire receptor mole- 
cule. 

The volume enclosed by the force field grid may 
have different x, y, and z extents. All receptor atoms 
are included in the calculation whether or not they 
fall within the grid volume. The force field grid may 
be positioned either by direct specification of its 
coordinates or by centering within a sphere cluster; 
in this manner, one can define a box that efficiently 
encloses the space that docked molecules are likely 
to occupy. 

We next consider how each set of grid values is 
calculated. 

receDtor coordinates 

SITE CHARACTERIZATION GRID CALCULATION 

DOCKING AND SCORING 
matching 

DOCK 3.0 orientation ligand coordinates 

I scorinq I 

Figure 1. Programs involved in the use of DOCK. MS1s319 
and DelPhi2021 are distributed independently. 

The program DISTMAF'6~17 produces the grid for 
contact scoring. The user specifies the grid resol- 
tuion, two "close contact" limits (for receptor polar 
and nonpolar atoms, respectively), and a cutoff de- 
fining the range of pairwise contacts. For every re- 
ceptor atom within the contact range, the sum at a 
grid point is incremented by one, unless a close con- 
tact limit is violated, in which case a negative number 
is added. Hydrogens are not included in the calcu- 
lation. We note that this is a different contact score 
than used in earlier versions of DOCK." 

The electrostatic score is an interaction energy 
based on potentials calculated with the DelPhi pro- 

DelPhi uses a finite-difference algorithm to 
solve the Poisson-Boltzmann equation. The resulting 
electrostatic potential is thought to be more realistic 
than those of standard force fields23; internal and 
external dielectrics of different magnitudes, nonzero 
ionic strength, and ion exclusion effects can be 
modeled?'2l We assume that a suitable potential can 
be calculated using the receptor alone (see the dis- 
cussion); i.e., the potential is not recalculated in the 
presence of the ligand. 

The program CHEMGRID produces the values for 
computing force field scores. These scores, or mo- 
lecular mechanics interaction energies, are calcu- 
lated as a sum of van der Waals and electrostatic 
components: 

lig mc 

where each term is a double sum over ligand atoms 
i and receptor atomsj, A, and Bij are van der Waals 
repulsion and attraction parameters, rij is the dis- 
tance between atoms i andj, qi and qj are the point 
charges on atoms i andj, D is the dielectric function, 
and 332.0 is a factor that converts the electrostatic 
energy into kilocalories per mole. Equation (1) con- 
tains the intermolecular terms present in the 
AMBER13 molecular mechanics function, except for 
an explicit hydrogen-bonding term. We assume that 
hydrogen bond energies can largely be accounted 
for in the electrostatic termF4 

Grid-based scoring can be accomplished effi- 
ciently when the ligand and receptor terms in the 
evaluation function are separable. This is generally 
true for the electrostatic part of a potential function. 
For the VDW terms, it is necessary to use a geometric 
mean approximation2z4: 

A, = ai a, and Bij = mi a,, (2) 

where the single-atom-type parameters are calcu- 
lated from van der Waals radius, R, and well depth, 
E,  according to: 

A = ~(222)'~ and B = 2~(2R)~. (3) 
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based on potentials calculated with the DelPhi pro- 

DelPhi uses a finite-difference algorithm to 
solve the Poisson-Boltzmann equation. The resulting 
electrostatic potential is thought to be more realistic 
than those of standard force fields23; internal and 
external dielectrics of different magnitudes, nonzero 
ionic strength, and ion exclusion effects can be 
modeled?'2l We assume that a suitable potential can 
be calculated using the receptor alone (see the dis- 
cussion); i.e., the potential is not recalculated in the 
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The program CHEMGRID produces the values for 
computing force field scores. These scores, or mo- 
lecular mechanics interaction energies, are calcu- 
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components: 
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where each term is a double sum over ligand atoms 
i and receptor atomsj, A, and Bij are van der Waals 
repulsion and attraction parameters, rij is the dis- 
tance between atoms i andj, qi and qj are the point 
charges on atoms i andj, D is the dielectric function, 
and 332.0 is a factor that converts the electrostatic 
energy into kilocalories per mole. Equation (1) con- 
tains the intermolecular terms present in the 
AMBER13 molecular mechanics function, except for 
an explicit hydrogen-bonding term. We assume that 
hydrogen bond energies can largely be accounted 
for in the electrostatic termF4 

Grid-based scoring can be accomplished effi- 
ciently when the ligand and receptor terms in the 
evaluation function are separable. This is generally 
true for the electrostatic part of a potential function. 
For the VDW terms, it is necessary to use a geometric 
mean approximation2z4: 
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where the single-atom-type parameters are calcu- 
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AMBER interaction energies

• Pre-calculated interaction energy grids

• Not often used with MD

• Linear scaling, not soft-core potential


• easier potential energies

• grids have no singularities


• Thermodynamic cycle includes high 
temperatures


• Hamiltonian replica exchange

• Adaptive protocol based on  

constant thermodynamic length

• No U-Turn sampler

• MBAR for analysis

(s, 300 K)
RL

(s, 300 K)(s, 300 K)

(vac, 300 K)
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On traversing thermodynamic state space

Shenfeld, Xu, Eastwood, Dror, Shaw. Physical Review E 2009

mann constant and T is the temperature. The equilibrium
probability density at a point x in phase space is p!!x"
=Z!

−1 exp#−h!!x"$, where Z!=%e−h!!x"dx is the partition func-
tion. Let f!=−ln Z! be the free energy multiplied by ", and
!!!x"=ln p!!x"= f!−h!!x" be the log probability. In this no-
tation, " may be a component of !. We will refer to h as the
Hamiltonian and to f as the free energy of the system. We
denote differentiation with respect to !i by !i, and second
derivatives by !ij. We assume throughout that we can differ-
entiate with respect to !i under the integral sign.

The Fisher information matrix g at ! is defined by

g!!"ij & cov!!!i!!,! j!!" = '!i!!!x" · ! j!!!x"(!, !1"

where angled brackets denote expectation with respect to p!

!the second equality follows because '!i!!!x"(!=0". Under a
few mild regularity conditions !#22$, 2.1", g is a well-defined
positive-definite quadratic form varying smoothly with !, en-
dowing D with a Riemannian metric, called the Fisher infor-
mation metric. The norm induced by g at !!D is denoted
) · )!. The Riemannian length of a path #!t" in D !0$ t$1" is

L!#" & *
0

1

)#̇)#dt = *
0

1 +,
i,j

#̇ig!#"ij#̇
jdt , !2"

where #̇=d# /dt. The Riemannian distance between !a and
!b is defined as the length of the connecting geodesic, and is
denoted L!!a ,!b".

The thermodynamic metric is closely related to the ther-
mal fluctuations. This is most apparent when h! is linear in
!, i.e., h!!x"=,i!

iXi!x", where Xi are functions of the mi-
crostate x alone. In this case we say that the system is in
Gibbs ensemble, and we have

g!!"ij = − !ij f!!" = cov!!Xi,Xj" , !3"

emphasizing the connection between the metric and fluctua-
tions. We define the energy coordinates by Ui!!"=!i f!

= 'Xi(!; in the coordinates U, the metric is given by g!U"
=g!!"−1 !#22$, 3.4, 4.1".

As an example, consider n molecules of ideal gas in the
isothermal-isobaric ensemble. Here, h is given by the en-
thalpy multiplied by ": h!x"="E!x"+"PV!x", so the system
is in Gibbs ensemble with respect to the coordinates !" ,"P".
The metric in these coordinates is

g!","P" = -var!E" 0

0 var!V" . = "−2-CVkB
−1 0

0 n%P−1 . ,

!4"

where CV is the heat capacity and % is the isothermal com-
pressibility. Geodesics for an ideal gas are illustrated in Fig.
1. The connection between the thermodynamic length and
fluctuations is intuitive in the energy coordinates, where the
metric is g!'E( , 'V("=g!" ,"P"−1= ! var!E"−1 0

0 var!V"−1 ". The distance
between two states differing in energy by d'E( and in volume
by d'V( is dL= #d'E(2 /var!E"+d'V(2 /var!V"$1/2; the states
are close if the fluctuations in energy and volume are large
compared to the difference in their equilibrium values.

III. MINIMIZING VARIANCE IN FREE-ENERGY
CALCULATIONS

We study the estimation of the free-energy difference &f
between two states !a ,!b!D, based on samples drawn from
a sequence of intermediate states, !0 ,!1 , . . . ,!k, where !0
=!a and !k=!b.

Theorem 1. Let & f̂ be an unbiased estimator for &f based
on a total of N observations. Then in the limit where the
intermediates !i are close,

var!& f̂" '
L!!a,!b"2

N
.

This bound can be achieved asymptotically as N→( by
choosing the !i along the geodesic connecting !a and !b.

Our argument will also show that to minimize the vari-
ance, the amount of sampling for the estimation of &f i
= f!i+1

− f!i
should be proportional to L!!i ,!i+1". In particular,

when sampling equally at each !i, the intermediates should
be equidistant.

We first prove the theorem for a special case, which high-
lights that the thermodynamic length represents an inherent
information-theoretical bound on the variance of a free-
energy estimator. Suppose that the system is in Gibbs en-
semble and & f̂!x" is any unbiased estimator for &f given an
observation x drawn from !b. Let

)! & f! − fa − ,
i

!i f /a · !!i − !a
i " . !5"

Then we obtain an estimator for )b, namely: )̂b!x"=& f̂!x"
−,i!i f /a ·&!i, whose variance is the same as that of & f̂ . Con-
versely, any unbiased estimator for )b gives rise to an unbi-
ased estimator for &f with the same variance. Note that
!i) /b=!i f /b−!i f /a=&Ui.

By the Cramér-Rao lower bound #22$, using g!U"
=g!!"−1 and the invariance of the norm under coordinate
transformations, we have

Β"1! "kBT#

Β
P

ln Β

ln
"ΒP#

FIG. 1. Left: geodesics for an ideal gas in the !" ,"P" coordi-
nates. Right: in the #ln " , ln!"P"$ coordinates, the metric is
g(ln " , ln!"P")=diag!CVkB

−1 ,n", and the geodesics are Euclidean
straight lines. Quasistatic adiabatic expansions of an ideal gas fol-
low geodesics !thick lines". Equidistant points on the geodesics are
shown as circles.
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FIG. 1. Left: geodesics for an ideal gas in the !" ,"P" coordi-
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Initialization Strategy:  
1. start with n random seeds 

2. sample state K 
3. determine state K+1 

4. resample (obtain n seeds 
for K+1 from samples for 

state K)
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Example ensembles: 1hnn (adrenaline synthesis)

file://localhost/Users/daveminh/clusters/DSCR/AlGDock/DockTest/stage45.tga


Protein-ligand binding PMF estimation: lessons 
I. it is best to start from docked configurations

Redocking to 1s3v (dihydrofolate reductase) 
Seven independent sampled ensembles of ligands  
fully interacting with the grid at 300 K

after starting with random poses after starting with docked poses after starting with the crystal pose



I. it is best to start from docked configurations

Redocking to the Astex Diverse Set (Hartshorn et al, J. Med. Chem. 2007) with UCSF dock6 
Sampling success = obtain crystal pose (with 2 A RMSD) in final thermodynamic state 
Each cycle is 1 to 1.5 hrs on a single CPU

Can be used for ligand pose prediction



II. MM force fields can improve pose prediction

Redocking to the Astex Diverse Set (Hartshorn et al, J. Med. Chem. 2007) with UCSF dock6 
Sampling success = obtain crystal pose (with 2 A RMSD), in 74/85 complexes 
Force field success = crystal pose is the lowest energy structure



III. the adaptive 
protocol works

Redocking to 1s3v (dihydrofolate reductase) 
Seven independent binding PMF calculations 
after starting with docked poses



IV. convergence is highly system-depedendent



IV. configuration space overlap between GBSA and gas 
phase limits binding PMF precision
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Protein-ligand binding free energies:  
dihydrofolate reductase
There are 63 crystallographic structures in the PDB 
The span of ligands was used to define the grid size



The binding site of DHFR is surprising small
Ligand center of mass  
coordinates fit within a  
sphere of radius 3.5 A



MD simulations span the PDB configuration space

Superimposed snapshots from  
5 MD simulations starting from 1pdb (apo)  

and 5 MD simulations starting from 1s3v 
totaling 2 microseconds 

!
The rmsd between crystal structures  

and the snapshots ranges from 0.7 to 3.0 A

Principal Component 1

Pr
in

cip
al 

Co
m

po
ne

nt
 2



Binding PMFs improve docking performance: ROC

Random AUlC is 0.14462



Binding PMFs improve 
docking performance

Same philosophy  
as docking, 
more  
sampling

Same philosophy  
as MM/GBSA 
!

43 actives from DHFR crystal structures 
122 decoys using DUD-E server (http://dude.docking.org/) 
Docked to first snapshot of simulation starting from 
1pdb, an apo structure of DHFR 
All scores are in kcal/mol 
Site confinement free energy is 1.08 kcal/mol

Bad snapshot, 
bug, 
or limitation  
of GBSA?

http://dude.docking.org/


Free energies may require surprisingly few snapshots



Future directions?

• Enhanced sampling methods/M2 for faster binding PMF estimation


• Different strategies for receptor sampling and weighting to account for 
induced fit: umbrella sampling, Markov State Models.


• Improved solvent models for sampling and postprocessing


• New systems for testing and applications


• Open to suggestions and collaborations


