Implicit Ligand Theory: Protein-Ligand Binding Free Energies for the Masses?

a new framework for high-throughput calculations

David Minh May 20, 2014 "Gunsaulus said that with a million dollars he could build a school where students of all backgrounds could prepare for meaningful roles in a changing industrial society"

Philip Danforth Armour, Sr.

Frank Wakely Gunsaulus

Web of Science, May 2014

alchemical free energy, 131

MM/GBSA, 265

Molecular Docking

- Why is docking popular?
 - It is easy to use
 - It is *fast*
- Why is docking fast?
 - Rigid receptors
 - no internal degrees of freedom
 - pre-calculated interaction grids
 - It is focused on minimization, not statistical sampling
- Can free energy calculations apply some ideas from docking?
 - Yes
 - With implicit ligand theory, free energy calculations can use rigid receptors.

with 500 orientations, 1 ligand every 5 seconds Coleman et al., PloS One 2013

Statistical Mechanics of Noncovalent Association

$$\Delta G^{\circ} = -\beta^{-1} \ln \left(\frac{C^{\circ} C_{RL}}{C_R C_L} \right)$$

$$\Delta G^{\circ} = -\beta^{-1} \ln \left(\frac{Z_{RL,N} Z_N}{Z_{R,N} Z_{L,N}} \frac{C^{\circ}}{8\pi^2} \right)$$

$$R \qquad L$$

$$Z_{RL,N} = \int I_{\xi} e^{-\beta U(r_{RL},r_S)} dr_{RL} dr_S$$

$$R + L \rightleftharpoons RL$$

$$Z_{Y,N} = \int e^{-\beta U(r_Y,r_S)} dr_Y dr_S$$

$$Z_N = \int e^{-\beta U(r_S)} dr_S$$

$$C_R \qquad \text{free receptor concentration}$$

$$C_L \qquad \text{free ligand concentration}$$

$$C_R \qquad \text{free receptor concentration}$$

$$C_R \qquad \text{free ligand concentration}$$

$$C_R \qquad \text{free ligand concentration}$$

$$C_R \qquad \text{free receptor concentration}$$

$$C_R \qquad \text{free ligand concentration}$$

Gilson et al, Biophys J 1997

Implicit Solvent Theory

$$Z_X \equiv \frac{Z_{X,N}}{Z_N} = \frac{\int e^{-\beta U(r_X,r_S)} dr_X dr_S}{\int e^{-\beta U(r_S)} dr_S}$$
$$= \frac{\int e^{-\beta \left[\psi(r_X,r_S) + U(r_X) + U(r_S)\right]} dr_X dr_S}{\int e^{-\beta U(r_S)} dr_S}$$
$$= \int e^{-\beta \left[U(r_X) + W(r_X)\right]} dr_X$$
$$W(r_X) = -\beta^{-1} \ln\left(\frac{\int e^{-\beta \psi(r_X,r_S)} e^{-\beta U(r_S)} dr_S}{\int e^{-\beta U(r_S)} dr_S}\right)$$

Interaction Energy $\psi(r_X, r_S) = U(r_X, r_S) - U(r_X) - U(r_S)$

Dong et. al., Methods in Cell Biology 2008

Implicit Solvent Theory

$$\Delta G^{\circ} = -\beta^{-1} \ln \left(\frac{Z_{RL,N} Z_N}{Z_{R,N} Z_{L,N}} \frac{C^{\circ}}{8\pi^2} \right)$$
$$= -\beta^{-1} \ln \left(\frac{Z_{RL}}{Z_R Z_L} \frac{C^{\circ}}{8\pi^2} \right)$$

$$Z_X = \int e^{-\beta [U(r_X) + W(r_X)]} dr_X$$

Dong et. al., Methods in Cell Biology 2008

$Z_X = \int e^{-\beta \left[U(r_X) + W(r_X) \right]} dr_X$ Implicit Ligand Theory **Effective Potential Energy** $\mathcal{U}(r_X) = U(r_X) + W(r_X)$ $\Delta G^{\circ} = -\beta^{-1} \ln \left(\frac{\int I_{\xi} e^{-\beta \mathcal{U}(r_{RL})} dr_{RL}}{\int e^{-\beta \mathcal{U}(r_{R})} dr_{R} \int e^{-\beta \mathcal{U}(r_{L})} dr_{L}} \frac{C^{\circ}}{8\pi^{2}} \right)$ $= -\beta^{-1} \ln \left(\frac{\int I_{\xi} e^{-\beta [\mathcal{U}(r_R) + \Psi(r_{RL}) + \mathcal{U}(r_L)]} dr_{RL}}{\int e^{-\beta \mathcal{U}(r_R)} dr_R \int e^{-\beta \mathcal{U}(r_L)} dr_L} \frac{C^{\circ}}{8\pi^2} \right)$ $= -\beta^{-1} \ln \left(\frac{\int e^{-\beta [B(r_R) + \mathcal{U}(r_R)]} dr_R}{\int e^{-\beta \mathcal{U}(r_R)} dr_R} \frac{\Omega C^{\circ}}{8\pi^2} \right) \quad \Omega = \int I_{\xi} d\xi_L$ Effective Interaction Energy $\Psi(r_{DT}) = \mathcal{U}(r_{DT}) = \mathcal{U}(r_{D}) = \mathcal{U}(r_{T})$

$$B(r_R) = -\beta^{-1} \ln \left(\frac{\int I_{\xi} e^{-\beta \Psi(r_{RL})} e^{-\beta U(r_L)} dr_L d\xi_L}{\int I_{\xi} e^{-\beta U(r_L)} dr_L d\xi_L} \right)$$

Implicit Ligand Theory

- Rigorous binding free energies
- Rigid receptor

Binding Free Energy

Binding PMF

Effective Interaction Energy

Effective Potential Energy

 $\Delta G^{\circ} = \beta^{-1} \ln \left\langle e^{-\beta B} \right\rangle_{R}^{r_{R}} + \Delta G_{\epsilon}$ $B(r_{R}) = \beta^{-1} \ln \left\langle e^{-\beta \Psi} \right\rangle_{L,I}^{r_{L},\epsilon_{L}}$ $\Psi(r_{RL}) = \mathcal{U}(r_{RL}) - \mathcal{U}(r_{R}) - \mathcal{U}(r_{L})$ $\mathcal{U}(r_{X}) = U(r_{X}) + W(r_{X})$

Minh, Journal of Chemical Physics 137:104106, 2012

Structure-Based Free Energy Methods

log(Computational Expense)

I. Sample configurations of the receptor

II. Estimate the binding PMF for each ligand

Only needs to be done once! Unbiased MD simulation/ Umbrella Sampling/ Markov State Model from heroic calculations. Snapshot database for well-known targets?

New type of free energy Lessons more broadly applicable?

III. Estimate the binding free energy for each ligand

Sample mean of exponential average

$$\hat{B}(r_R) = -\beta^{-1} \ln \frac{1}{N} \sum_{n=1}^{N} e^{-\beta \Psi(r_{RL,n})}$$

Demonstration on Cucurbit[7]uril

-13

B02

Binding PMFs using Hamiltonian replica exchange in NAMD

100 receptor snapshots from standard molecular dynamics

Minh, Journal of Chemical Physics 137:104106, 2012.

80

100

Ligand				
$\hat{B}(r_R)$	$\min\{\Psi(r_R)\}$	$\min\{\Psi(r_R)\}$	HREX	HREX
$\Delta \hat{G}^{\circ}$	$\min\{\hat{B}(r_R)\}$	EXP	$\min\{\hat{B}(r_R)\}$	EXP
AD1	- 28.6	-27.2	-22.0	- 20.1
AD2	- 36.4	- 34.6	-27.6	-25.4
AD3	- 38.1	- 36.8	-27.6	-26.2
AD4	-43.1	-40.4	- 29.8	-27.1
AD5	- 35.8	- 33.6	-26.8	-24.4
B02	- 29.8	-27.9	-21.0	- 18.1
B05	- 37.9	- 35.6	-23.7	-21.4
B11	-48.5	-45.7	-23.1	-20.5
F01	-22.7	-21.3	-10.2	-7.6
F02	- 30.9	-28.8	-17.0	- 14.6
F03	-28.7	-27.0	-14.5	-13.2
F06	- 35.6	- 33.8	-21.3	- 19.7
R_{ITC}^2	0.849	0.855	0.684	0.704
RMSE _{ITC}	17.3	15.3	5.8	4.5
R^2_{Gilson}	0.787	0.795	0.926	0.925
RMSE _{Gilson}	15.8	13.9	3.5	2.4
R^2_{Exp}	0.723	0.736	0.996	
RMSE _{Exp}	15.5	13.6	2.3	

Minh, Journal of Chemical Physics 137:104106, 2012.

Protein-ligand binding PMF estimation: the method

AMBER interaction energies

$$E = \sum_{i=1}^{lig} \sum_{j=1}^{rec} \left[\frac{A_{ij}}{r_{ij}^{12}} - \frac{B_{ij}}{r_{ij}^{6}} + 332.0 \frac{q_i q_j}{Dr_{ij}} \right],$$

$$A_{ij} = \sqrt{A_{ii}} \sqrt{A_{jj}}$$
 and $B_{ij} = \sqrt{B_{ii}} \sqrt{B_{jj}}$,

Meng, Shoichet, and Kuntz, J. Comput. Chem.1994

- Not often used with MD
- Linear scaling, not soft-core potentia

LJ repulsive

- easier potential energies
- grids have no singularities
- Thermodynamic cycle includes high temperatures
- Hamiltonian replica exchange
 - Adaptive protocol based on LJ attractive constant thermodynamic length
 - No U-Turn sampler
 - MBAR for analysis

$$\mathcal{L}(\gamma) \equiv \int_0^1 \|\dot{\gamma}\|_{\gamma} dt = \int_0^1 \sqrt{\sum_{i,j} \dot{\gamma}^j g(\gamma)_{ij} \dot{\gamma}^j} dt,$$
$$g(\lambda)_{ij} \equiv \operatorname{cov}_{\lambda}(\partial_i \ell_{\lambda}, \partial_j \ell_{\lambda}) = \langle \partial_i \ell_{\lambda}(x) \cdot \partial_j \ell_{\lambda}(x) \rangle_{\lambda},$$

Shenfeld, Xu, Eastwood, Dror, Shaw. Physical Review E 2009

Grids based on AMBER ff12 Electrostatic (PB/SA using APBS (s, 300 K) (s, 300 K) (s, 300 K) R (vac, 300 K) (vac, 300 K)

(vac, 1200 K

(vac, 1200

On traversing thermodynamic state space

Shenfeld, Xu, Eastwood, Dror, Shaw. Physical Review E 2009

$$h_{\lambda} = \beta [U_{MM}(x) + \lambda \Psi(x)]$$
$$g(\lambda) = \beta^2 \lambda^2 \sigma^2 [\Psi(x)] + C$$
$$\frac{d\mathcal{L}(\lambda)}{dt} = \beta \lambda \sigma [\Psi(x)] \frac{d\lambda}{dt}$$

Initialization Strategy: 1. start with n random seeds 2. sample state K 3. **determine state K+1** 4. resample (obtain n seeds for K+1 from samples for

state K)

Example ensembles: 1hnn (adrenaline synthesis)

Protein-ligand binding PMF estimation: lessons I. it is best to start from docked configurations

Redocking to 1s3v (dihydrofolate reductase) Seven independent sampled ensembles of ligands fully interacting with the grid at 300 K

I. it is best to start from docked configurations

Redocking to the Astex Diverse Set (Hartshorn et al, J. Med. Chem. 2007) with UCSF dock6 Sampling success = obtain crystal pose (with 2 A RMSD) in final thermodynamic state Each cycle is 1 to 1.5 hrs on a single CPU

II. MM force fields can improve pose prediction

Redocking to the Astex Diverse Set (Hartshorn et al, J. Med. Chem. 2007) with UCSF dock6 Sampling success = obtain crystal pose (with 2 A RMSD), in 74/85 complexes Force field success = crystal pose is the lowest energy structure

III. the adaptive protocol works

Redocking to 1s3v (dihydrofolate reductase) Seven independent binding PMF calculations after starting with docked poses

IV. convergence is highly system-depedendent

IV. configuration space overlap between GBSA and gas phase limits binding PMF precision

Protein-ligand binding free energies: dihydrofolate reductase

There are 63 crystallographic structures in the PDB The span of ligands was used to define the grid size

The binding site of DHFR is surprising small

Ligand center of mass coordinates fit within a sphere of radius 3.5 A

MD simulations span the PDB configuration space

Superimposed snapshots from 5 MD simulations starting from 1pdb (apo) and 5 MD simulations starting from 1s3v totaling 2 microseconds

The rmsd between crystal structures and the snapshots ranges from 0.7 to 3.0 A

Binding PMFs improve docking performance: ROC

Random AUIC is 0.14462

Binding PMFs improve docking performance

-50

43 actives from DHFR crystal structures 122 decoys using DUD-E server (<u>http://dude.docking.org/</u>) Docked to first snapshot of simulation starting from 1pdb, an apo structure of DHFR All scores are in kcal/mol Site confinement free energy is 1.08 kcal/mol

01

-16

-14

-12

-10

Score

250

Score

Free energies may require surprisingly few snapshots

Future directions?

- Enhanced sampling methods/M2 for faster binding PMF estimation
- Different strategies for receptor sampling and weighting to account for induced fit: umbrella sampling, Markov State Models.
- Improved solvent models for sampling and postprocessing
- New systems for testing and applications
- Open to suggestions and collaborations