Implicit Ligand Theory: Protein-Ligand Binding Free Energies for the Masses?

a new fralinework for high-throughput calculations

ILLINOIS INSTITUTE OF TECHNOLOGY

David Minh
May 20, 2014
"Gunsaulus said that with a million dollars he could build a school where students of all backgrounds could prepare for meaningful roles in a changing industrial society"

Web of Science, May 2014

alchemical, 246

alchemical free energy, 131

MM/GBSA, 265
molecular docking, 15,121

protein-ligand molecular docking, 1186

Molecular Docking

-Why is docking popular?

- It is easy to use
- It is fast
-Why is docking fast?
- Rigid receptors
- no internal degrees of freedom
- pre-calculated interaction grids
- It is focused on minimization, not statistical sampling
- Can free energy calculations apply some ideas from docking?
- Yes
- With implicit ligand theory, free energy calculations can use rigid receptors.

Statistical Mechanics of Noncovalent Association

$$
\begin{aligned}
\Delta G^{\circ} & =-\beta^{-1} \ln \left(\frac{C^{\circ} C_{R L}}{C_{R} C_{L}}\right) \\
\Delta G^{\circ} & =-\beta^{-1} \ln \left(\frac{Z_{R L, N} Z_{N}}{Z_{R, N} Z_{L, N}} \frac{C^{\circ}}{8 \pi^{2}}\right) \\
Z_{R L, N} & =\int I_{\xi} e^{-\beta U\left(r_{R L}, r_{S}\right)} d r_{R L} d r_{S} \\
Z_{Y, N} & =\int e^{-\beta U\left(r_{Y}, r_{S}\right)} d r_{Y} d r_{S} \\
Z_{N} & =\int e^{-\beta U\left(r_{S}\right)} d r_{S}
\end{aligned}
$$

L

$$
R+L \rightleftarrows R L
$$

Gilson et al, Biophys J 1997

Implicit Solvent Theory

$$
\begin{aligned}
Z_{X} & \equiv \frac{Z_{X, N}}{Z_{N}}=\frac{\int e^{-\beta U\left(r_{X}, r_{S}\right)} d r_{X} d r_{S}}{\int e^{-\beta U\left(r_{S}\right)} d r_{S}} \\
& =\frac{\left.\int e^{-\beta\left[\psi\left(r_{X}, r_{S}\right)\right.}+U\left(r_{X}\right)+U\left(r_{S}\right)\right]}{\left(\int e^{-\beta U\left(r_{S}\right)} d r_{S}\right)} \\
& =\int e^{-\beta\left[U\left(r_{X}\right)+W\left(r_{X}\right)\right]} d r_{X} \\
W\left(r_{X}\right) & =-\beta^{-1} \ln \left(\frac{\int e^{-\beta \psi\left(r_{X}, r_{S}\right)} e^{-\beta U\left(r_{S}\right)} d r_{S}}{\int e^{-\beta U\left(r_{S}\right)} d r_{S}}\right) \\
\psi\left(r_{X}, r_{S}\right) & =U\left(r_{X}, r_{S}\right)-U\left(r_{X}\right)-U\left(r_{S}\right)
\end{aligned}
$$

Dong et. al., Methods in Cell Biology 2008

Implicit Solvent Theory

$$
\begin{aligned}
\Delta G^{\circ} & =-\beta^{-1} \ln \left(\frac{Z_{R L, N} Z_{N}}{Z_{R, N} Z_{L, N}} \frac{C^{\circ}}{8 \pi^{2}}\right) \\
& =-\beta^{-1} \ln \left(\frac{Z_{R L}}{Z_{R} Z_{L}} \frac{C^{\circ}}{8 \pi^{2}}\right) \\
Z_{X} & =\int e^{-\beta\left[U\left(r_{X}\right)+W\left(r_{X}\right)\right]} d r_{X}
\end{aligned}
$$

Dong et. al.,
Methods in Cell Biology 2008

Implicit Ligand Theory

Effective Potential Energy

$$
\mathcal{U}\left(r_{X}\right)=U\left(r_{X}\right)+W\left(r_{X}\right)
$$

$$
\Delta G^{\circ}=-\beta^{-1} \ln \left(\frac{\int I_{\xi} e^{-\beta \mathcal{U}\left(r_{R L}\right)} d r_{R L}}{\int e^{-\beta \mathcal{U}\left(r_{R}\right)} d r_{R} \int e^{-\beta \mathcal{U}\left(r_{L}\right)} d r_{L}} \frac{C^{\circ}}{8 \pi^{2}}\right)
$$

$$
=-\beta^{-1} \ln \left(\frac{\int I_{\xi} e^{-\beta\left[\mathcal{U}\left(r_{R}\right)+\Psi\left(r_{R L}\right)+\mathcal{U}\left(r_{L}\right)\right.}}{\int e^{-\beta \mathcal{U}\left(r_{R}\right)} d r_{R}\left(\int e^{-\beta \mathcal{U}\left(r_{L}\right)} d r_{L}\right)} \frac{C^{\circ}}{8 \pi^{2}}\right)
$$

$$
=-\beta^{-1} \ln \left(\frac{\int e^{-\beta\left[B\left(r_{R}\right)+\mathcal{U}\left(r_{R}\right)\right]} d r_{R}}{\int e^{-\beta \mathcal{U}\left(r_{R}\right)} d r_{R}} \frac{\Omega C^{\circ}}{8 \pi^{2}}\right) \Omega=\int I_{\xi} d \xi_{L}
$$

Effective Interaction Energy

$$
\begin{aligned}
& \Psi\left(r_{R L}\right)=\mathcal{U}\left(r_{R L}\right)-\mathcal{U}\left(r_{R}\right)-\mathcal{U}\left(r_{L}\right) \\
& B\left(r_{R}\right)=-\beta^{-1} \ln \left(\frac{\int I_{\xi} e^{-\beta \Psi\left(r_{R L}\right)} e^{-\beta \mathcal{U}\left(r_{L}\right)} d r_{L} d \xi_{L}}{\int I_{\xi} e^{-\beta \mathcal{U}\left(r_{L}\right)} d r_{L} d \xi_{L}}\right)
\end{aligned}
$$

Implicit Ligand Theory

- Rigorous binding free energies
- Rigid receptor

Binding Free Energy
Binding PMF
Effective Interaction Energy

Effective Potential Energy

$$
\begin{aligned}
\Delta G^{\circ} & =\beta^{-1} \ln \left\langle e^{-\beta B}\right\rangle_{R}^{r_{R}}+\Delta G_{\epsilon} \\
B\left(r_{R}\right) & =\beta^{-1} \ln \left\langle e^{-\beta \Psi}\right\rangle_{L, I}^{r_{L}, \epsilon_{L}}
\end{aligned}
$$

$$
\Psi\left(r_{R L}\right)=\mathcal{U}\left(r_{R L}\right)-\mathcal{U}\left(r_{R}\right)-\mathcal{U}\left(r_{L}\right)
$$

$$
\mathcal{U}\left(r_{X}\right)=U\left(r_{X}\right)+W\left(r_{X}\right)
$$

Structure-Based Free Energy Methods

log(Computational Expense)

I. Sample configurations of the receptor

II. Estimate the binding PMF for each ligand

Only needs to be done once! Unbiased MD simulation/ Umbrella Sampling/
Markov State Model from heroic calculations. Snapshot database for well-known targets?

Lessons more broadly applicable?

III. Estimate the binding free energy for each ligand

Sample mean of exponential average

$$
\hat{B}\left(r_{R}\right)=-\beta^{-1} \ln \frac{1}{N} \sum_{n=1}^{N} e^{-\beta \Psi\left(r_{R L, n}\right)}
$$

Demonstration on Cucurbit[7]uril

Binding PMF
Binding PMFs using Hamiltonian replica exchange in NAMD

0	0.5	1	1.5	2
	Total	Simulation	Time (ns)	

100 receptor snapshots from standard molecular dynamics

Binding Free Energy

Minh, Journal of Chemical Physics 137:104106, 2012.

Ligand				
$\hat{B}\left(r_{R}\right)$	$\min \left\{\Psi\left(r_{R}\right)\right\}$	$\min \left\{\Psi\left(r_{R}\right)\right\}$	HREX	HREX
$\Delta \hat{G}^{\circ}$	$\min \left\{\hat{B}\left(r_{R}\right)\right\}$	EXP	$\min \left\{\hat{B}\left(r_{R}\right)\right\}$	EXP
AD1	-28.6	-27.2	-22.0	-20.1
AD2	-36.4	-34.6	-27.6	-25.4
AD3	-38.1	-36.8	-27.6	-26.2
AD4	-43.1	-40.4	-29.8	-27.1
AD5	-35.8	-33.6	-26.8	-24.4
B02	-29.8	-27.9	-21.0	-18.1
B05	-37.9	-35.6	-23.7	-21.4
B11 $^{\text {F01 }}$	-48.5	-45.7	-23.1	-20.5
F02 $^{-22.7}$	-21.3	-10.2	-7.6	
F03 2	-30.9	-28.8	-17.0	-14.6
F06 2	-28.7	-27.0	-14.5	-13.2
R $_{\text {ITC }}^{2}$	-35.6	-33.8	-21.3	-19.7
RMSE $_{\text {ITC }}$	0.849	0.855	0.684	0.704
R $_{\text {Gilson }}^{2}$	17.3	15.3	5.8	4.5
RMSE $_{\text {Gilson }}$	0.787	0.795	0.926	0.925
R $_{\text {Exp }}^{2}$	15.8	13.9	3.5	2.4
RMSE $_{\text {Exp }}$	0.723	0.736	0.996	

Protein-ligand binding PMF estimation: the method

AMBER interaction energies
$E=\sum_{i=1}^{l i g} \sum_{j=1}^{r e c}\left[\frac{A_{i j}}{r_{i j}^{12}}-\frac{B_{i j}}{r_{i j}^{6}}+332.0 \frac{q_{i} q_{j}}{D r_{i j}}\right]$,
$A_{i j}=\sqrt{A_{i i}} \sqrt{A_{j j}}$ and $B_{i j}=\sqrt{B_{i i}} \sqrt{B_{j j}}$,
Meng, Shoichet, and Kuntz, J. Comput. Chem. 1994

- Pre-calculated interaction energy grids
- Not often used with MD
- Linear scaling, not soft-core potentia - easier potential energies
- grids have no singularities
- Thermodynamic cycle includes high temperatures
- Hamiltonian replica exchange
- Adaptive protocol based on constant thermodynamic length
- No U-Turn sampler
- MBAR for analysis

$$
\begin{aligned}
\mathcal{L}(\gamma) & \equiv \int_{0}^{1}\|\dot{\gamma}\|_{\gamma} d t=\int_{0}^{1} \sqrt{\sum_{i, j} \dot{\gamma}^{j} g(\gamma)_{i j} \dot{\gamma}^{j}} d t, \\
g(\lambda)_{i j} & \equiv \operatorname{cov}_{\lambda}\left(\partial_{i} \ell_{\lambda}, \partial_{j} \ell_{\lambda}\right)=\left\langle\partial_{i} \ell_{\lambda}(x) \cdot \partial_{j} \ell_{\lambda}(x)\right\rangle_{\lambda},
\end{aligned}
$$

Shenfeld, Xu, Eastwood, Dror, Shaw. Physical Review E 2009

LJ attractive

On traversing thermodynamic state space

$$
\begin{aligned}
& \mathcal{L}(\gamma) \equiv \int_{0}^{1}\|\dot{\gamma}\|_{\gamma} d t=\int_{0}^{1} \sqrt{\sum_{i, j} \dot{\gamma}^{j} g(\gamma)_{i j} \dot{\gamma}^{j}} d t \\
& g(\lambda)_{i j} \equiv \operatorname{cov}_{\lambda}\left(\partial_{i} \ell_{\lambda}, \partial_{j} \ell_{\lambda}\right)=\left\langle\partial_{i} \ell_{\lambda}(x) \cdot \partial_{j} \ell_{\lambda}(x)\right\rangle_{\lambda}
\end{aligned}
$$

Shenfeld, Xu, Eastwood, Dror, Shaw. Physical Review E 2009
Initialization Strategy:

1. start with n random seeds
2. sample state K
3. determine state $K+1$
4. resample (obtain n seeds for $K+1$ from samples for state K)

$$
\begin{aligned}
h_{\lambda} & =\beta\left[U_{M M}(x)+\lambda \Psi(x)\right] \\
g(\lambda) & =\beta^{2} \lambda^{2} \sigma^{2}[\Psi(x)]+C \\
\frac{d \mathcal{L}(\lambda)}{d t} & =\beta \lambda \sigma[\Psi(x)] \frac{d \lambda}{d t}
\end{aligned}
$$

Example ensembles: 1hnn (adrenaline synthesis)

Protein-ligand binding PMF estimation: lessons I. it is best to start from docked configurations

Redocking to 1s3v (dihydrofolate reductase)
Seven independent sampled ensembles of ligands
fully interacting with the grid at 300 K

I. it is best to start from docked configurations

Redocking to the Astex Diverse Set (Hartshorn et al, J. Med. Chem. 2007) with UCSF dock6 Sampling success = obtain crystal pose (with 2 A RMSD) in final thermodynamic state Each cycle is $\mathbf{1}$ to $\mathbf{1 . 5}$ hrs on a single CPU

II. MM force fields can improve pose prediction

Redocking to the Astex Diverse Set (Hartshorn et al, J. Med. Chem. 2007) with UCSF dock6 Sampling success = obtain crystal pose (with 2 A RMSD), in 74/85 complexes Force field success $=$ crystal pose is the lowest energy structure

III. the adaptive protocol works

Redocking to 1s3v (dihydrofolate reductase) Seven independent binding PMF calculations after starting with docked poses

IV. convergence is highly system-depedendent

IV. configuration space overlap between GBSA and gas phase limits binding PMF precision

Protein-ligand binding free encrgies: dihydrofolate reductase

There are 63 crystallographic structures in the PDB The span of ligands was used to define the grid size

The binding site of DHFR is surprising small

Ligand center of mass coordinates fit within a sphere of radius 3.5 A

MD simulations span the PDB configuration space

Superimposed snapshots from 5 MD simulations starting from 1pdb (apo) and 5 MD simulations starting from 1s3v totaling 2 microseconds

The rmsd between crystal structures and the snapshots ranges from 0.7 to 3.0 A

Binding PMFs improve docking performance: ROC

\longleftrightarrow	dock6, AUIC $=0.160$	\longleftrightarrow	GBSA mean Ψ, AUIC $=0.198$
\longmapsto	GBSA $\min \Psi$, AUIC $=0.134$	\longmapsto	GBSA binding PMF, AUIC $=0.476$

Binding PMFs improve docking performance

43 actives from DHFR crystal structures
122 decoys using DUD-E server (http://dude.docking.org/)
Docked to first snapshot of simulation starting from
1pdb, an apo structure of DHFR
All scores are in kcal/mol
Site confinement free energy is $1.08 \mathrm{kcal} / \mathrm{mol}$

Docking scores based on GBSA min Ψ

Docking scores based on GBSA mean Ψ

Free energies may require surprisingly few snapshots

Future directions?

- Enhanced sampling methods/M2 for faster binding PMF estimation
- Different strategies for receptor sampling and weighting to account for induced fit: umbrella sampling, Markov State Models.
- Improved solvent models for sampling and postprocessing
- New systems for testing and applications
- Open to suggestions and collaborations

